Методы решения нестандартных задач. Нестандартные методы решения задач

«Решение квадратных неравенств» - Решить неравенство. Что такое нули функции? Решение квадратных неравенств. Как найти нули функции? Цель урока: Что зависит от знака первого коэффициента квадратичной функции? Как знак дискриминанта влияет на решение квадратного неравенства?

«Решение неравенств 2» - Повторение свойств числовых неравенств. Устный счет – зарядка для ума. Воспитание интереса к математике. Этапы графического решения уравнений. Фломастеры, мелки разных цветов, линейки, компьютеры. Решение неравенств первой степени с одной переменной (графический способ решения). Оборудование. Актуализация знаний.

«Нестандартные уроки» - Отказ от шаблона в организации урока, от рутины и формализма в проведении. Влияние нестандартных форм урока на учебный процесс. Максимальное вовлечение учащихся класса в активную деятельность на уроке. План проведения МО: Подготовительный период собственно урок анализ. Использование оценки в качестве формирующего (а не только результативного инструмента).

«Свойства неравенств» - Свойства неравенств. Что называется неравенством? Устная работа. Какие свойства неравенств вам известны? Сложение и умножение числовых неравенств. Докажите неравенство. Решите неравенство. Определение неравенства. Какими свойствами вы пользовались при решении неравенства? Решение неравенств. Неравенства.

«Иррациональные уравнения и неравенства» - Иррациональные неравенства. Иррациональные уравнения и неравенства. 3. Введение вспомогательных переменных. Методы решения. 5. Сужение области поиска корней уравнения за счет нахождения ОДЗ. Иррациональные уравнения Методы решения. 1. Возведение в степень. 6. Графический метод. Иррациональные уравнения и неравенства с параметром.

«Уравнения и неравенства» - Решение системы графическим способом. 2. Найдите сумму чисел, удовлетворяющих неравенству. Найти область определения функции. "Решение уравнений и неравенств". Формулировки заданий. Неравенства в КИМах. Найти произведение х*у, где (х;у) – решение системы. У=х+2. x2 – 2x – 3 =0 Представим в виде x2 –3 = 2x.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Математическое образование, получаемое в школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека - это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений.

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Сила теории уравнений в том, что она не только имеет теоретическое значение для познания естественных законов, но и служит конкретным практическим целям.

Актуальность темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, люди находят ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.). Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе в 9 классе, а также 10 и 11 и при сдаче экзаменов.

Цель: Изучить стандартные и нестандартные способы решения квадратных уравнений

Задачи

  1. Изложить наиболее известные способы решения уравнений
  2. Изложить нестандартные способы решения уравнений
  3. Сделать вывод

Объект исследования: квадратные уравнения

Предмет исследования: способы решения квадратных уравнений

Методы исследования:

  • Теоретические: изучение литературы по теме исследования;
  • Анализ: информации полученной при изучении литературы; результатов полученных при решении квадратных уравнений различными способами.
  • Сравнение способов на рациональность их использования при решении квадратных уравнений.

Глава 1.Квадратные уравнения и стандартные способы решения

1.1.Определение квадратного уравнения

Квадратным уравнением называется уравнение вида ax 2 + bx + c = 0, где х - переменная, а, b и с - некоторые числа, причем, а ≠ 0.

Числа а, b и с - коэффициенты квадратного уравнения. Число а называют первым коэффициентом, число b - вторым коэффициентом и число c - свободным членом.

Полное квадратное уравнение — это квадратное уравнение, в котором присутствуют все три слагаемых т.е. коэффициенты в и с отличны от нуля.

Неполное квадратное уравнение — это уравнение, в котором хотя бы один из коэффициентов в или, с равен нулю.

Определение 3. Корнем квадратного уравнения ах 2 + b х + с = 0 называют всякое значение переменной х, при котором квадратный трехчлен ах 2 + b х + с обращается в нуль.

Определение 4 . Решить квадратное уравнение — значит найти все его

корни или установить, что корней нет.

Пример: - 7x + 3 =0

В каждом из уравнений вида a + bx + c = 0, где а ≠ 0, наибольшая степень переменной x - квадрат. Отсюда и название: квадратное уравнение.

Квадратное уравнение, в котором коэффициент при х 2 равен 1, называют приведенным квадратным уравнением .

Пример

х 2 - 11х+ 30=0, х 2 -8х= 0.

1.2.Стандартные способы решения квадратных уравнений

Решение квадратных уравнений с помощью выделения квадрата двучлена

Решение квадратного уравнения, в котором оба коэффициента при неизвестных и свободный член отличны от нуля. Такой способ решения квадратного уравнения называют выделением квадрата двучлена.

Разложение левой части уравнения на множители .

Решим уравнение х 2 + 10х - 24 = 0 . Разложим левую часть на множители:

х 2 + 10х - 24 = х 2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).

Следовательно, уравнение можно переписать так:(х + 12)(х - 2) = 0

Произведение множителей равно нулю, если по крайней мере, один из его множителей равен нулю.

Ответ: -12; 2.

Решение квадратного уравнения по формуле.

Дискриминант квадратного уравнения ax 2 + bx + c = 0 выражение b 2 - 4ас = D - по знаку которого судят о наличии у этого уравнения действительных корней.

Возможные случаи в зависимости от значения D:

  1. Если D >0, то уравнение имеет два корня.
  2. Если D= 0, то уравнение имеет один корень: х =
  3. Если D < 0, то уравнение не имеет корней.

Решение уравнений с помощью теоремы Виета.

Теорема: Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Приведенное квадратное уравнение имеет вид:

х 2 + bx + c = 0.

Обозначим второй коэффициент буквой р, а свободный член буквой q:

х 2 + px + q = 0, тогда

x 1 + x 2 = - p; x 1 · x 2 = q

Глава 2.Нестандартные способы решения квадратных уравнений

2.1.Решение с помощью свойств коэффициентов квадратного уравнения

Свойства коэффициентов квадратного уравнения - это такой способ решения квадратных уравнений, который поможет быстро и устно найти корни уравнения:

ax 2 + bx + c = 0

  1. Если а+ b+c= 0, то x 1 = 1, x 2 =

Пример. Рассмотрим уравнение х 2 +3х - 4= 0.

a + b + c = 0, то x 1 = 1, x 2 =

1+3+(-4) = 0, тогда x 1 = 1, x 2 = = - 4

Проверим полученные корни с помощью нахождения дискриминанта:

D= b 2 - 4ас= 3 2 - 4·1·(-4) = 9+16= 25

x 1 = = = = = - 4

Следовательно, если + b +c= 0, то x 1 = 1, x 2 =

  1. Если b = a + c , то x 1 = -1, x 2 =

х 2 + 4х +1 = 0, a=3, b=4, c=1

Если b= a + c , то x 1 = -1, x 2 = , то 4 = 3 + 1

Корни уравнения: x 1 = -1, x 2 =

Значит корнями этого уравнения являются -1 и. Проверим это с помощью нахождения дискриминанта:

D= b 2 - 4ас= 4 2 - 4·3·1 = 16 - 12 = 4

x 1 = = = = = - 1

Следовательно, b= a + c , то x 1 = -1, x 2 =

2.2.Способ «переброски»

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски» . Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Если а ±b+c ≠0, то используется прием переброски:

2 +4х+ 1=0; 3+4+1 ≠ 0

Применяя способ «переброски» получаем:

х 2 + 4х+3 = 0

Таким образом, с помощью теоремы Виета получаем корни уравнения:

x 1 = - 3, x 2 = -1.

Однако корни уравнения необходимо поделить на 3 (то число, которое «перебрасывали»):

Значит, получаем корни: x 1 = -1, x 2 = .

Ответ: ; - 1

2.3.Решение с помощью закономерности коэффициентов

  1. Если уравнение ax 2 + bx + c = 0, коэффициент b = (a 2 +1), и коэффициент c = a , то его корни равны x 1 = - a , x 2 =

ax 2 + (а 2 + 1)∙ х + а= 0

Пример. Рассмотрим уравнение 3х 2 +10х +3 = 0.

Таким образом, корни уравнения: x 1 = -3, x 2 =

D= b 2 - 4ас= 10 2 - 4·3·3 = 100 - 36 = 64

x 1 = = = = = - 3

x 2 = = = = = ; Следовательно, x 1 = - a , x 2 =

  1. Если уравнение ax 2 - bx + c = 0, коэффициент b = (a 2 +1), и коэффициент c = a , то его корни равны x 1 = a , x 2 =

Таким образом, решаемое уравнение должно иметь вид

ax 2 - (а 2 + 1)∙ х+ а= 0

Пример. Рассмотрим уравнение 3х 2 - 10х +3 = 0.

, x 2 =

Проверим данное решение с помощью дискриминанта:

D= b 2 - 4ас= 10 2 - 4·3·3 = 100 - 36 = 64

a , x 2 =

  1. Если уравнение ax 2 + bx - c = 0, коэффициент b = (a 2 -1), и коэффициент c = a , то его корни равны x 1 = -a , x 2 =

Таким образом, решаемое уравнение должно иметь вид

ax 2 + (а 2 - 1)∙ х - а= 0

Пример. Рассмотрим уравнение 3х 2 + 8х - 3 = 0..

Таким образом, корни уравнения: x 1 = - 3, x 2 =

Проверим данное решение с помощью дискриминанта:

D= b 2 - 4ас= 8 2 + 4·3·3 = 64 + 36 = 100

x 1 = = = = = - 3

x 2 = = = = = ;Следовательно, x 1 = - a , x 2 =

  1. Если уравнение ax 2 - bx - c = 0, коэффициент b = (a 2 -1), и коэффициент c = a , то его корни равны x 1 = a , x 2 =

Таким образом, решаемое уравнение должно иметь вид

ax 2 - (а 2 - 1)∙ х - а= 0

Пример. Рассмотрим уравнение 3х 2 - 8х - 3 = 0..

Таким образом, корни уравнения: x 1 = 3, x 2 = -

Проверим данное решение с помощью дискриминанта:

D= b 2 - 4ас= 8 2 + 4·3·3 = 64 + 36 = 100

x 2 = = = = = 3; Следовательно, x 1 = a , x 2 = -

2.4.Решение с помощью циркуля и линейки

Предлагаю следующий способ нахождения корней квадратного уравнения ах 2 + b х + с = 0 с помощью циркуля и линейки (рис.6).

Допустим, что искомая окружность пересекает ось

абсцисс в точках В(х 1 ; 0) и D (х 2 ; 0), где х 1 и х 2 - корни уравнения ах 2 + b х + с = 0 , и проходит через точки

А(0; 1) и С(0; c / a ) на оси ординат. Тогда по теореме о секущих имеем OB . OD = OA . OC , откуда OC = = =

Центр окружности находится в точке пересечения перпендикуляров SF и SK , восстановленных в серединах хорд AC и BD , поэтому

1) построим точки S (центр окружности) и A (0; 1) ;

2) проведем окружность с радиусом SA ;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

1) Радиус окружности больше ординаты центра (AS > SK , или R > a + c /2 a ) , окружность пересекает ось Ох в двух точках (рис. 7а) В(х 1 ; 0) и D (х 2 ; 0) , где х 1 и х 2 - корни квадратного уравнения ах 2 + b х + с = 0 .

2) Радиус окружности равен ординате центра (AS = SB , или R = a + c /2 a ) , окружность касается оси Ох (рис.8б) в точке В(х 1 ; 0) , где х 1 - корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра AS < S , R <

окружность не имеет общих точек с осью абсцисс (рис 7в), в этом случае уравнение не имеет решения.

а )AS>SB, R> б ) AS=SB, R= в ) AS

Два решения x 1 и x 2 Одно решение x 1 Нет решения

Пример.

Решим уравнение х 2 - 2х - 3 = 0 (рис.8).

Решение. Определим координаты точки центра окружности по формулам:

x = - = - = 1,

y = = = -1

Проведем окружность радиуса SA, где А (0; 1).

Ответ: х 1 = - 1; х 2 = 3.

2.5.Геометрический способ решения квадратных уравнений .

В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал - Хорезми.

Примеры.

1) Решим уравнение х 2 + 10х = 39.

В оригинале эта задача формулируется следующим образом: «Квадрат и десять корней равны 39» (рис.9).

Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD, достраивая в углах четыре равных квадрата, сторона каждого их них 2,5, а площадь 6,25.

Площадь S квадрата ABCD можно представить как сумму площадей:

первоначального квадрата х 2 , четырех прямоугольников (4. 2,5х = 10х) и четырех пристроенных квадратов (6,25. 4 = 25) , т.е. S = х 2 + 10х + 25. Заменяя

х 2 + 10х числом 39 , получим, что S = 39 + 25 = 64 , откуда следует, что сторона квадрата ABCD , т.е. отрезок АВ = 8 . Для искомой стороны х первоначального квадрата получим:

x = 8 - 2 - 2 = 3

2) А вот, например, как древние греки решали уравнение у 2 + 6у - 16 = 0 .

Решение представлено на рис 10. где

у 2 + 6у = 16, или у 2 + 6у + 9 = 16 + 9.

Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой

один и тот же квадрат, а исходное уравнение у 2 + 6у - 16 + 9 - 9 = 0 - одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у 1 = 2, у 2 = - 8 (рис. .

рис.10

3) Решить геометрически уравнение у 2 - 6у - 16 = 0.

Преобразуя уравнение, получаем

у 2 - 6у = 16.

На рис 11. находим «изображения» выражения у 2 - 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3 . Значит, если к выражению у 2 - 6у прибавить 9 , то получим площадь квадрата со стороной у - 3 . Заменяя выражение у 2 - 6у равным ему числом 16,

получаем: (у - 3) 2 = 16 + 9, т.е. у - 3 = ± √25 , или у - 3 = ± 5, где у 1 = 8 и у 2 = - 2.

Заключение

В ходе выполнения своей исследовательской работы я считаю, что с поставленной целью и задачами я справился, мне удалось обобщить и систематизировать изученный материал по выше указанной теме.

Нужно отметить, что каждый способ решения квадратных уравнений по-своему уникален. Некоторые способы решения помогают сэкономить время, что немаловажно при решении заданий на контрольных работах и экзаменах. При работе над темой я ставил задачу, выяснить какие методы являются стандартными, а какие нестандартными.

Итак, стандартные методы (используются чаще при решении квадратных уравнений):

  • Решение с помощью выделения квадрата двучлена
  • Разложение левой части на множители
  • Решение квадратных уравнений по формуле
  • Решение с помощью теоремы Виета
  • Графическое решение уравнений

Нестандартные методы:

  • Свойства коэффициентов квадратного уравнения
  • Решение способом переброски коэффициентов
  • Решение с помощью закономерности коэффициентов
  • Решение квадратных уравнений, с помощью циркуля и линейки.
  • Исследование уравнения на промежутках действительной оси
  • Геометрический способ

При этом следует заметить, что каждый способ обладает своими особенностями и границами применения.

Решение уравнений с использованием теоремы Виета

Достаточно легкий способ, дает возможность сразу увидеть корни уравнения, при этом легко находятся только целые корни.

Решение уравнений способом переброски

За минимальное количество действий можно найти корни уравнения, применяется совместно со способом теоремы Виета, при этом также легко найти только целые корни.

Свойства коэффициентов квадратного уравнения

Доступный метод для устного нахождения корней квадратного уравнения, но подходит только к некоторым уравнениям

Графическое решение квадратного уравнения

Наглядный способ решения квадратного уравнения, однако могут возникать погрешности при составлении графиков

Решение квадратных уравнений с помощью циркуля и линейки

Наглядный способ решения квадратного уравнения, но также могут возникать погрешности

Геометрический способ решения квадратных уравнений

Наглядный способ, похож на способ выделения полного квадрата

Решая уравнения разными способами, я пришел к выводу, что зная комплекс методов решения квадратных уравнений, можно решить любое уравнение, предлагаемое в процессе обучения.

При этом, следует заметить, что одним из более рациональных способов решения квадратных уравнений является способ «переброски» коэффициента. Однако самым универсальным способом можно считать стандартный способ решения уравнений по формуле, потому что данный способ позволяет решить любое квадратное уравнение, хотя иногда и за более длительное время. Также такие способы решения, как способ «переброски», свойство коэффициентов и теорема Виета помогаю сэкономить время, что очень важно при решении заданий на экзаменах и контрольных работах.

Думаю, что моя работа будет интересна учащимся 9-11 классов, а также тем, которые хотят научиться решать рационально квадратные уравнения и хорошо подготовиться к выпускным экзаменам. Также она будет интересна и учителям математики, за счет рассмотрения истории квадратных уравнений и систематизации способов их решения.

Список литературы

  1. Глейзер, Г.И. История математики в школе/ Г.И. Глейзер.-М.: Просвещение, 1982- 340с.
  2. Гусев, В.А. Математика. Справочные материалы/ В.А. Гусев, А.Г. Мордкович - М.: Просвещение, 1988, 372с.
  3. Ковалева Г. И., Конкина Е. В. «Функциональный метод решения уравнений и неравенств», 2014 г.
  4. Кулагин Е. Д. «300 конкурсных задач по математике», 2013 г.
  5. Потапов М. К. «Уравнения и неравенства. Нестандартные методы решения» М. «Дрофа», 2012 г.
  6. .Барвенов С. А «Методы решения алгебраических уравнений», М. «Аверсэв», 2006 г.
  7. Супрун В.П. «Нестандартные методы решения задач по математике» - Минск «Полымя», 2010г
  8. Шабунин М.И. «Пособие по математике для поступающих в вузы», 2005г.
  9. Башмаков М.И. Алгебра: учеб. для 8 кл. общеобразоват. учреждений. - М.: Просвещение, 2004. - 287с.
  10. Шаталова С. Урок - практикум по теме «Квадратные уравнения».- 2004.

Муниципальный конкурс исследовательских и творческих работ школьников

«Шаг в науку»

Секция МАТЕМАТИКИ

Тема : Нестандартные методы решения иррациональных

уравнений.

Нуждина Мария, МАОУ СОШ №2

10 класс, п. Карымское

Научный руководитель: Васильева Елена Валерьевна,

учитель математики

МАОУ СОШ №2, п. Карымское

п. Карымское, 2013

    Аннотация………………………………………………………………….3

    План исследования…………………………………………………….......4-5

    Описание работы:

§1. Основные приемы решения иррациональных уравнений………………6-9

§2. Решение иррациональных уравнений методом замены неизвестного…10-14

§3. Иррациональные уравнения, сводимые к модулю ………….15-17

§4. Разложение на множители…………………………………………...…..18-19

§5. Уравнения вида ………………………………………20-22

§6. Теорема о среднем геометрическом в иррациональных уравнениях

; ……………………………23-24

4) Список литературы…………………………………………………….....25

Аннотация.

Тема нашей исследовательской работы: «Нестандартные приемы решения иррациональных уравнений».

При выполнении работы было необходимо: сравнивать различные методы решения; переходить от общих методов к частным, и наоборот; аргументировать и доказывать выдвинутые утверждения; изучать и обобщать информацию, собранную из различных источников. В связи с этим можно выделить следующие методы исследовательской деятельности: эмпирическое; логическое и теоретическое (исследование); пошаговое; репродуктивное и эвристическое;

В результате проведенной работы получены следующие результаты и выводы :

    Существует множество приемов для решения иррациональных уравнений;

    Не все иррациональные уравнения решаются с помощью стандартных приемов;

    Мы изучили часто встречающиеся замены, с помощью которых сложные иррациональные уравнения сводятся с простейшим;

    Мы рассмотрели нестандартные приемы решения иррациональных уравнений

Тема: «Нестандартные приемы решения иррациональных уравнений»

Нуждина М.П., Забайкальский край, п. Карымское, МАОУ СОШ №2, 10 класс.

План исследования.

Объектной областью , в которой мы проводили исследование, является алгебра. Объект исследования - решение уравнений. Среди множества уравнений мы рассмотрели иррациональные уравнения - предмет нашего исследования.

В школьном курсе алгебры рассматриваются только стандартные методы и приемы решения (возведенные в степень и простые приемы замены). Но в процессе исследования выяснилось, что существуют иррациональные уравнения, для решения которых стандартных приемов и методов недостаточно. Такие уравнения решаются с помощью других, более рациональных, методов.

Поэтому считаем, что изучение таких приемов решения - нужная и интересная работа.

В процессе исследования выяснилось, что иррациональных уравнений великое множество и сгруппировать их по видам и методам проблематично.

Целью исследования является изучение и систематизирование методов решения иррациональных уравнений.

Гипотеза : Если знать нестандартные методы решения иррациональных уравнений, то это позволит повысить качество выполнения некоторых олимпиадных и тестовых заданий ЕГЭ.

Для достижения поставленных целей и проверки гипотезы необходимо решить следующие задачи :

Охарактеризовать виды иррациональных уравнений.

Установить связи между видами и методами решения.

Оценить значение проверки и нахождения ОДЗ.

Рассмотреть нестандартные случаи при решении иррациональных уравнений (теорема о средней геометрической, свойства монотонности функций).

В процессе исследования было изучено множество учебных пособий таких авторов как М.И.Сканави,И.Ф.Шарыгина,О.Ю.Черкасова,А.Н.Рурукина,И.Т.Бородуля, а так же статьи из научно-теоретического и методического журнала «Математика в школе».

Тема: «Нестандартные приемы решения иррациональных уравнений»

Нуждина М.П., Забайкальский край, п. Карымское, МАОУ СОШ №2, 10 класс.

Описание работы.

§1 Основные приемы решения иррациональных уравнений

Уравнение y(x)=0 является иррациональным, если функция y(x) содержит корни из неизвестной величины x или выражений, зависящих от x.

Многие иррациональные уравнения могут быть решены, основываясь только на понятиях корня и области допустимых значений уравнения (ОДЗ), но встречаются и другие методы, некоторые из них будут рассмотрены в работе.

Основным приемом решения иррациональных уравнений считается уединение в одной части уравнения радикала, последующее возведение обоих частей уравнения в соответствующую степень. Если таких радикалов несколько, то уравнение необходимо возводить в исходную степень неоднократно, кстати, при этом нет нужды заботиться о том, чтобы выражение, стоящее под знаком уединенного радикала, было бы неотрицательно.

Однако при возведении в четную степень могут возникнуть посторонние корни, то есть корни, не являющиеся решением исходного уравнения.

Поэтому при использовании такого приема решения, корни должны быть обязательно проверены и посторонние отброшены, в этом случае проверка является элементом решения и необходима даже в тех случаях, когда лишние корни не появились, но ход решения был таков, что они могли появиться. С другой стороны, иногда легче сделать проверку, чем доказывать, что она необходима.

Рассмотрим несколько примеров:

Ответ: корней нет

–посторонний корень

В этих примерах мы рассмотрели стандартные методы решения иррациональных уравнений(возведение обеих частей в степень и проверка корней).

Однако, многие иррациональные уравнения могут быть решены,

основываясь только на понятиях корня и ОДЗ уравнения.

Так как в уравнение входят радикалы только четных степеней, то достаточно решить систему неравенств.

3х -2х 2 +5 ≥0 (условия ОДЗ уравнения)

4х 2 -26х +40 ≥0

Решая эту систему неравенств получим:

х € Откуда х = 2,5.

х € (-∞ ; 2,5] ᴗ }

Просмотров