Химические свойства гидроксидов. Оксиды и гидроксиды металлов Химические свойства гидроксидов

Гидроксиды можно представить как продукт присоединения (реального или мысленного) воды к соответствующим оксидам. Гидроксиды подразделяются на основания, кислоты, амфотерные гидроксиды. Основания имеют общий состав М(ОН)х, кислоты имеют общий состав НхКо. В молекулах кислородсодержащих кислот замещаемые атомы водорода связаны с центральным элементом через атомы кислорода. В молекулах бескислородных кислот атомы водорода присоединяются непосредственно к атому неметалла. К амфотерным гидрокисдам относятся прежде всего гидроксиды алюминия, бериллия и цинка, а также гидроксиды многих переходных металлов в промежуточных степенях окисления.
По растворимости в воде выделяют растворимые основания - щёлочи (образованы щелочными и щелочноземельными металлами). Основания, образованные остальными металлами, не растворяются в воде. Большинство неорганических кислот растворимы в воде. К нерастворимым в воде неорганическим кислотам относится только кремниевая кислота H2SiO3. Амфотерные гидроксиды в воде не растворяются.

Химические свойства оснований.

Все основания, как растворимые, так и нерастворимые, обладают общим характерным свойством - образовывать соли.
Рассмотрим химические свойства растворимых оснований (щелочей):
1. При растворении в воде диссоциируют с образованием катиона металла и гидроксид-аниона. Изменяют окраску индикаторов: фиолетового лакмуса - на синий, фенолфталеина - на малиновый, метилового оранжевого - на жёлтый, универсальной индикаторной бумаги - на синий.
2. Взаимодействие с кислотными оксидами:
щёлочь + кислотный оксид = соль.
3. Взаимодействие с кислотами:
щёлочь + кислота = соль + вода.
Реакция между кислотой и щёлочью называется реакцией нейтрализации.
4. Взаимодействие с амфотерными гидроксидами:
щёлочь + амфотерный гидроксид = соль (+ вода)
5. Взаимодействие с солями (при условии растворимости исходной соли и образовании осадка или газа в результате реакции.
Рассмотрим химические свойства нерастворимых оснований:
1. Взаимодействие с кислотами:
основание + кислота = соль + вода.
Многокислотные основания способны к образованию не только средних, но и основных солей.
2. Разложение при нагревании:
основание = оксид металла + вода.

Химические свойства кислот.

Все кислоты обладают общим характерным свойством - образование солей при замещении катионов водорода на катионы металла/аммония.
Рассмотрим химические свойства растворимых в воде кислот:
1. При растворении в воде диссоциируют с образованием катионов водорода и аниона кислотного остатка. Изменяют окраску индикаторов на красный (розовый) цвет, за исключением фенолфталеина (не реагирует на кислоты, остаётся бесцветным).
2. Взаимодействие с металлами, стоящими в ряду активности левее водорода (при условии образования растворимой соли):
кислота + металл = соль + водород.
При взаимодействии с металлами исключениями являются кислоты-окислители - азотная и концентрированная серная кислоты. Во-первых, они реагируют и с некоторыми металлами, стоящими в ряду активности правее водорода. Во-вторых, в реакция с металлами никогда не выделяется водород, но образуются соль соответствующей кислоты, вода и продукты восстановления азота или серы соответственно.
3. Взаимодействие с основаниями/амфотерными гидроксидами:
кислота + основание = соль + вода.
4. Взаимодействие с аммиаком:
кислота + аммиак = соль аммония
5. Взаимодействие с солями (при условии образования газа или осадка):
кислота + соль = соль + кислота.
Многоосновные кислоты способны к образованию не только средних, но и кислых солей.
Нерастворимая кремниевая кислота не изменяет окраску индикаторов (очень слабая кислота), но способна реагировать с растворами щелочей при небольшом нагревании:
1. Взаимодействие кремниевой кислоты с раствором щёлочи:
кремниевая кислота + щёлочь = соль + вода.
2. Разложение (при длительном хранении или при нагревании)
кремниевая кислота = оксид кремния (IV) + вода.

Химические свойства амфотерных гидроксидов.

Амфотерные гидроксиды способны к образованию двух рядов солей, так как при реакциях с щелочами проявляют свойства кислоты, а при реакциях с кислотами проявляют свойства основания.
Рассмотрим химические свойства амфотерных гидроксидов:
1. Взаимодействие с щелочами:
амфотерный гидроксид + щёлочь = соль (+ вода).
2. Взаимодействие с кислотами:
амфотерный гидроксид + кислота = соль + вода.

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода в степни окисления – 2 и какого-нибудь другого элемента.

могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Они бывают солеобразующими и несолеобразующие.

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl 2 + H 2 O.

В результате химических реакций можно получать и другие соли:

CuO + SO 3 → CuSO 4 .

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N 2 O, NO.

Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова « основание» ), кислотными и амфотерными.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na 2 O, K 2 O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na 2 O + H 2 O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na 2 O + SO 3 → Na 2 SO 4 .

3. Реагируют с кислотами, образуя соль и воду:

CuO + H 2 SO 4 → CuSO 4 + H 2 O.

4. Реагируют с амфотерными оксидами:

Li 2 O + Al 2 O 3 → 2LiAlO 2 .

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO 2 , SO 3 , P 2 O 5 , N 2 O 3 , Cl 2 O 5 , Mn 2 O 7 и т.д. Кислотные оксиды растворяются в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO 3 + H 2 O → H 2 SO 4 .

Но не все кислотные оксиды непосредственно реагируют с водой (SiO 2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO 2 + CaO → CaCO 3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO 2 + Ba(OH) 2 → BaCO 3 + H 2 O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH) 2 и H 2 ZnO 2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl 2 + H 2 O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция:

ZnO + 2 NaOH + H 2 O => Na 2 .

Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле . Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.


  • Оксиды – бинарные соединения, в состав которых входит кислород.
  • Оксиды металлов – твердые вещества.
  • Гидроксиды – сложные вещества, соответствующие оксидам, если к ним присоединены одна или несколько гидроксидных групп.

  • 1.Металл + кислород = оксид или пероксид.
  • 2.Металл + вода = водород + щелочь (если основание растворимо в воде)

или = водород + основание (если основание не растворимо в воде)

Реакция протекает только в том случае, если

металл находится в ряду активности до водорода.

Основание – сложное вещество, в котором каждый атом металла связан с одной или несколькими гидроксогруппами.


  • Оксиды и гидроксиды металлов

в степенях окисления +1 и +2 проявляют основные свойства ,

  • в степенях окисления +3, +4, +5 проявляют амфотерные ,
  • в степенях окисления +6, +7 проявляют кислотные .




Заполнить таблицу:

металлов главных подгрупп I - III групп

Вопросы для сравнения

I группа

  • Общая формула оксида.

II группа

2. Физические свойства.

III группа

  • Характер оксидов

Взаимодействие:

а) с водой

б) с кислотами

в) с кислотными оксидами

г) с амфотерными оксидами

д) со щелочами

5. Формула гидроксида.

6. Физические свойства

  • Характер гидроксидов

Взаимодействие:

а) действие на индикаторы

б) с кислотами

в) с кислотными оксидами

г) с растворами солей

д) с неметаллами

е) со щелочами

з) отношение к нагреванию


Свойства оксидов и гидроксидов в периоде изменяются от основных через амфотерные к кислотным, т.к. увеличивается положительная степень окисления элементов.

Na 2 O , Mg +2 O , Al 2 O 3

основные амфотерный

Na +1 O Н , Mg +2 (O Н ) 2 , Al +3 (O Н ) 3

щелочь Слабое Амфотерный

основание гидроксид

В главных подгруппах основные свойства оксидов и гидроксидов возрастают сверху вниз .


Соединения металлов I А группы

Оксиды щелочных металлов

Общая формула Ме 2 О

Физические свойства: Твердые, кристаллические вещества, хорошо растворимые в воде.

Li 2 O , Na 2 O – бесцветные, К 2 О, Rb 2 O – желтые, Cs 2 О – оранжевый.

Способы получения:

Окислением металла получается только оксид лития

4 Li + O 2 → 2 Li 2 O

(в остальных случаях получаются пероксиды или надпероксиды).

Все оксиды (кроме Li 2 O) получают при нагревании смеси пероксида (или надпероксида) с избытком металла:

Na 2 O 2 + 2Na → 2Na 2 O

KO 2 + 3K → 2K 2 O

Химические свойства

Типичные основные оксиды:

Взаимодействуют с водой, образуя щелочи: Na 2 О + H 2 O →

2. Взаимодействуют с кислотами, образуя соль и воду: Na 2 О + Н Cl →

3. Взаимодействуют с кислотными оксидами, образуя соли: Na 2 О + SO 3 →

4. Взаимодействуют с амфотерными оксидами, образуя соли: Na 2 О + ZnO → Na 2 ZnO 2


Гидроксиды щелочных металлов

Общая формула – МеОН

Физические свойства: Белые кристаллические вещества, гигроскопичны, хорошо растворимы в воде (с выделением тепла). Растворы мылкие на ощупь, очень едкие.

NaOH – едкий натр

КОН – едкое кали

Сильные основания - Щелочи. Основные свойства усиливаются в ряду:

LiOH NaOH KOH RbOH CsOH

Способы получения:

1. Электролиз растворов хлоридов:

2NaCl + 2H 2 O 2NaOH + H 2 + Cl 2

2. Обменные реакции между солью и основанием:

K 2 CO 3 + Ca(OH) 2 CaCO 3  + 2KOH

3. Взаимодействие металлов или их основных оксидов (или пероксидов и надпероксидов) с водой:

2 Li + 2 H 2 O 2 LiOH + H 2

Li 2 O + H 2 O 2 LiOH

Na 2 O 2 + 2 H 2 O 2 NaOH + H 2 O 2


Химические свойства

1. Изменяют цвет индикаторов:

Лакмус – на синий

Фенолфталеин – на малиновый

Метил-оранж – на желтый

2. Взаимодействуют со всеми кислотами.

NaOH + HCl → NaCl + H 2 O

3. Взаимодействуют с кислотными оксидами.

2NaOH + SO 3 → Na 2 SO 4 + H 2 O

4. Взаимодействуют с растворами солей, если образуется газ или осадок.

2 NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4

5. Взаимодействуют с некоторыми неметаллами (серой, кремнием, фосфором)

2 NaOH +Si + H 2 O → Na 2 SiO 3 + 2H 2

6. Взаимодействуют с амфотерными оксидами и гидроксидами

2 NaOH + Zn О + H 2 O → Na 2 [ Zn (OH) 4 ]

2 NaOH + Zn (ОН) 2 → Na 2 [ Zn (OH) 4 ]

7. При нагревании не разлагаются, кроме LiOH .


II группы

Оксиды металлов II А группы

Общая формула МеО

Физические свойства: Твердые, кристаллические вещества белого цвета, малорастворимые в воде.

Способы получения:

Окисление металлов (кроме Ba , который образует пероксид)

2Са + О 2 → 2СаО

2) Термическое разложение нитратов или карбонатов

CaCO 3 → CaO + CO 2

2Mg(NO 3) 2 → 2MgO + 4NO 2 + O 2

Химические свойства

ВеО – амфотерный оксид

Оксиды Mg , Ca , Sr , Ba – основные оксиды

Взаимодействуют с водой(кроме ВеО), образуя щелочи(Mg (OH) 2 – слабое основание):

СаО + H 2 O →

2. Взаимодействуют с кислотами, образуя соль и воду: СаО + Н Cl →

3. Взаимодействуют с кислотными оксидами, образуя соли: СаО + SO 3 →

4. ВеО взаимодействует со щелочами: ВеО + 2 NaOH + H 2 O → Na 2 [Ве(OH) 4 ]


Гидроксиды металлов II А группы

Общая формула – Ме(ОН) 2

Физические свойства: Белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов. Ве(ОН) 2 – в воде нерастворим.

Основные свойства усиливаются в ряду:

Ве(ОН) 2 Mg (ОН) 2 Ca (ОН) 2 Sr (ОН) 2 → В a (ОН) 2

Способы получения:

Реакции щелочноземельных металлов или их оксидов с водой:

Ba + 2 H 2 O → Ba (OH) 2 + H 2

CaO (негашеная известь) + H 2 O → Ca (OH) 2 (гашеная известь)


Химические свойства

Ве(ОН) 2 – амфотерный гидроксид

Mg (ОН) 2 – слабое основание

Са(ОН) 2 , Sr (ОН) 2, Ва(ОН) 2 – сильные основания – щелочи.

Изменяют цвет индикаторов:

Лакмус – на синий

Фенолфталеин – на малиновый

Метил-оранж – на желтый

2. Взаимодействуют с кислотами, образуя соль и воду:

Ве(ОН) 2 + Н 2 SO 4 →

3. Взаимодействуют с кислотными оксидами:

Са(ОН) 2 + SO 3 →

4. Взаимодействуют с растворами солей, если образуется газ или осадок:

Ва(ОН) 2 + K 2 SO 4 →

Гидроксид бериллия взаимодействует со щелочами:

Ве(ОН) 2 + 2 NaOH → Na 2 [Ве(OH) 4 ]

При нагревании разлагаются: Са(ОН) 2 →


Соединения металлов главной подгруппы III группы

Соединения алюминия

Оксид алюминия

Al 2 O 3

O = Al O Al = O

Физические свойства: Глинозем, корунд, окрашенный – рубин (красный), сапфир (синий).

Твердое тугоплавкое (t° пл.=2050 ° С) вещество; существует в нескольких кристаллических модификациях.

Способы получения:

Сжигание порошка алюминия: 4 Al + 3 O 2 → 2 Al 2 O 3

Разложение гидроксида алюминия: 2 Al (OH) 3 → Al 2 O 3 + 3 H 2 O


Химические свойства

Al 2 O 3 - амфотерный оксид с преобладанием основных свойств; с водой не реагирует.

Как основной оксид: Al 2 O 3 + 6 HCl → 2 AlCl 3 + 3 H 2 O

Как кислотный оксид: Al 2 O 3 + 2 NaOH + 3 H 2 O → 2 Na [ Al (OH) 4 ]

2) Сплавляется со щелочами или карбонатами щелочных металлов:

Al 2 O 3 + Na 2 CO 3 → 2 NaAlO 2 (алюминат натрия) + CO 2

Al 2 O 3 + 2 NaOH → 2 NaAlO 2 + H 2 O


Гидроксид алюминия Al ( OH ) 3

Физические свойства: белое кристаллическое вещество,

нерастворимое в воде.

Способы получения:

1) Осаждением из растворов солей щелочами или гидроксидом аммония:

AlCl 3 + 3NaOH → Al(OH) 3 + 3NaCl

Al 2 (SO 4) 3 + 6NH 4 OH → 2Al(OH) 3 + 3(NH 4) 2 SO 4

Al 3+ + 3 OH ¯ → Al (OH) 3 (белый студенистый)

2) Слабым подкислением растворов алюминатов:

Na + CO 2 → Al(OH) 3 + NaHCO 3

Химические свойства

Al ( OH ) 3 - а мфотерный гидроксид :

1) Реагирует с кислотами и растворами щелочей:

Как основание Al (OH) 3 + 3 HCl → AlCl 3 + 3 H 2 O

Как кислота Al (OH) 3 + NaOH → Na [ Al (OH) 4 ]

(тетрагидроксоалюминат натрия)

При нагревании разлагается: 2 Al (OH) 3 → Al 2 O 3 + 3 H 2 O


Заполнить таблицу: Сравнительная характеристика оксидов и гидроксидов

металлов главных подгрупп I - III групп

Вопросы для сравнения

I группа

  • Общая формула оксида.

II группа

Степень окисления Ме в оксиде.

2. Физические свойства.

III группа

3. Химические свойства (сравнить).

4. Способы получения оксидов.

  • Характер оксидов

Взаимодействие:

а) с водой

б) с кислотами

в) с кислотными оксидами

г) с амфотерными оксидами

д) со щелочами

5. Формула гидроксида.

Степень окисления Ме в гидроксиде.

6. Физические свойства

7. Химические свойства (сравнить).

  • Характер гидроксидов

8. Способы получения гидроксидов.

Взаимодействие:

а) действие на индикаторы

б) с кислотами

в) с кислотными оксидами

г) с растворами солей

д) с неметаллами

е) со щелочами

ж) с амфотерными оксидами и гидроксидами

з) отношение к нагреванию

В Е Щ Е С Т В А

_________________________________

простые сложные

____/______ ______________/___________

металлы неметаллы оксиды гидроксиды соли

К, Ва S, P Р 2 О 5 H 2 SO 4 Cu(NO 3) 2

Na 2 O Вa(ОH) 2 Na 2 CO 3

Рассмотрим классификацию, химические свойства и методы получения сложных веществ.

ОКСИДЫ

ОКСИД – это сложное вещество, состоящее из двух элементов, один из которых кислород, находящийся в степени окисления -2.

Исключения составляют:

1) соединения кислорода и фтора – фториды: например, фторид кислорода OF 2 (степень окисления кислорода в этом соединении +2)

2) пероксиды (соединения некоторых элементов с кислородом, в которых имеется связь между атомами кислорода), например:

пероксид водорода Н 2 О 2 пероксид калия K 2 O 2

Примеры оксидов: оксид кальция - СаО, оксид бария - ВаО. Если элемент образует несколько оксидов, то в их названии в скобках указывается римской цифрой валентность элемента, например: оксид серы (IV) - SO 2 , оксид серы (VI) - SO 3 .

Все оксиды можно разделить на две большие группы: солеобразующие(образующие соли) и несолеобразующие.

Солеобразующие подразделяют на три группы: основные, амфотерные и кислотные.

О К С И Д Ы

_________________/__________________

солеобразующие несолеобразующие

СО, N 2 O, NO

↓ ↓ ↓

основные амфотерные кислотные

(им (им соответсвуют

соответствуют, кислоты)

основания)

CaO, Li 2 O ZnO, BeO, PbO P 2 O 5 , Mn 2 О 7

Cr 2 O 3 , Al 2 O 3

Неметаллы образуют кислотные оксиды, например: оксид азота (V) – N 2 O 5 , оксид углерода (IV) - CO 2 . Металлы с валентностью меньше трех, как правило, образуют основные оксиды, например: оксид натрия -Na 2 O, оксид магния – MgO; а с валентностью больше четырех – кислотные оксиды, например, оксид марганца (VII) - Mn 2 O 7 , оксид вольфрама (VI) - WO 3 .

Рассмотрим химические свойства кислотных и основных оксидов.

ХИМИЧЕСКИЕ СВОЙСТВА ОКСИДОВ

ОСНОВНЫХ КИСЛОТНЫХ

Взаимодействие с водой

Продуктом реакции является:

основание кислота

(если, в состав оксида P 2 O 5 + 3H 2 O à 2H 3 PO 4

входит активный металл, SiO 2 +H 2 O ≠

Li, Na, K, Rb, Cs, Fr, Ba, Ca)

CaO + H 2 O à Ca(OH) 2

2. Взаимодействие друг с другом, образуя соли CuO + SO 3 à CuSO 4

3. Взаимодействие с гидроксидами:

С растворимыми кислотами, с растворимыми основаниями

в результате реакции образуютсясоль и вода

CuO + Н 2 SO 4 àCuSO 4 + H 2 O CO 2 +Ca(OН) 2 àCaCO 3 + Н 2 О

Менее летучие оксиды

Вытесняют более летучие

из их солей :

K 2 CO 3 + SiO 2 à K 2 SiO 3 + CO 2

К числу амфотерных оксидов относят: оксиды металлов с валентностью, равной трем, например: оксид алюминия -Al 2 O 3, оксид хрома (III) - Cr 2 O 3 , оксид железа (III) - Fe 2 O 3, а также несколько исключений, в которых металл двухвалентен, например: оксид бериллия BeO, оксид цинка ZnO, оксид свинца (II) – PbO. .

Амфотерные оксиды обладают двойственной природой: они одновременно способны к реакциям, в которые вступают как основные и как кислотные оксиды

Докажем амфотерный характер оксида алюминия. Приведем уравнения реакций взаимодействия с соляной кислотой и щелочью (в водном растворе и при нагревании). При взаимодействии оксида алюминия и соляной кислоты, образуется соль - хлорид алюминия. В этом случае оксид алюминия выступает в роли основного оксида.

Al 2 O 3 + 6HCl à2AlCl 3 + 3H 2 O

как основный

В водном растворе происходит образование комплексной соли -

тетрагидроксоалюмината натрия:

Al 2 O 3 + 2NaOH + 3H 2 Oà 2Na тетрагидроксоалюминат натрия

как кислотный

При сплавлении со щелочами образуется метаалюминаты.

Представим молекулу гидроксида алюминия Al(OH) 3 в форме кислоты, т.е. на первом месте запишем все атомы водорода, на втором кислотный остаток:

H 3 AlO 3 - алюминиевая кислота

Для трехвалентных металлов из формулы кислоты вычтем 1 Н 2 О, получив метаалюминиевую кислоту:

- Н 2 О

HAlO 2 - метаалюминиевая кислота

сплавление

Al 2 O 3 +2 NaOHà 2NaAlO 2 + Н 2 О метаалюминат натрия

как кислотный

МЕТОДЫ ПОЛУЧЕНИЯ ОКСИДОВ:

1. Взаимодействие простых веществ с кислородом:

4Al + 3O 2 à 2Al 2 O 3

2. Горение или обжиг сложных веществ:

CH 4 + 2O 2 à CO 2 + 2H 2 O

2ZnS + 3O 2 à 2SO 2 + 2ZnO

3. Разложение при нагревании нерастворимых гидроксидов:

Cu(OH) 2 à CuO + H 2 O H 2 SiO 3 à SiO 2 + H 2 O

4. Разложение при нагревании средних и кислых солей:

CaCO 3 à CaO + CO 2

2КHCO 3 àK 2 CO 3 + CO 2 +H 2 O

4AgNO 3 à4Ag + 4NO 2 + O 2

ГИДРОКСИДЫ

Гидроксиды подразделяют на три группы: основания, кислоты и амфотерные гидроксиды (проявляющие свойства, как оснований, так и кислот).

ОСНОВАНИЕ – это сложное вещество, состоящее из атомов металла и одной или нескольких гидроксогрупп

(– ОН).

Например: гидроксид натрия - NaOH, гидроксид бария Ва(ОН) 2 . Количество гидроксогрупп в молекуле основания равно валентности металла.

КИСЛОТА – это сложное вещество, которое состоит из атомов водорода, способных замещаться на атомы металла, и кислотного остатка.

Например: серная кислота – H 2 SO 4 , фосфорная кислота - Н 3 РО 4 .

Валентность кислотного остатка определяется количеством атомов водорода. В химических соединениях сохраняется валентность кислотного остатка (см. таблицу 1).

ТАБЛИЦА 1 ФОРМУЛЫ НЕКОТОРЫХ КИСЛОТ И

КИСЛОТНЫХ ОСТАТКОВ

Название кислоты Формула Кислотный остаток Валентность кислотного остатка Название соли, образованной этой кислотой
Плавиковая НF F I фторид
Соляная НCl Cl I хлорид
Бромоводородная НBr Br I бромид
Йодоводородная НI I I йодид
Азотная HNO 3 NO 3 I нитрат
Азотистая HNO 2 NO 2 I нитрит
Уксусная СН 3 COOH СН 3 COO I ацетат
Серная H 2 SO 4 SO 4 II сульфат
Сернистая H 2 SO 3 SO 3 II сульфит
Сероводородная H 2 S S II сульфид
Угольная H 2 CO 3 CO 3 II карбонат
Кремневая H 2 SiO 3 SiO 3 II силикат
Фосфорная H 3 PO 4 PO 4 III фосфат

По растворимости в воде гидроксиды делятся на две группы: растворимые (например, КОН, H 2 SO 4) и нерастворимые (H 2 SiO 3 , Сu(OH) 2). Растворимые в воде основания называются щелочами.

Оксиды - это сложные вещества, состоящие из какого-нибудь элемента и кислорода со степенью окисления -2.

Например: K2O, CaO, Fe2O3, СО2, Р2О5, SO3, Cl2O7, OsO4. Оксиды образуют все химические элементы, кроме Не, Ne, Ar. Химическая связь между кислородом и другим элементом бывает ионной и ковалентной. По химическим свойствам оксиды делятся на солеобразующие и несолеобразующие. К последним относятся, например, N2O, NO, NO 2 , SiO, SO.

Солеобразующие оксиды делятся на основные, кислотные и амфотерные.

О с н о в н ы е о к с и д ы. Оксиды, гидраты которых являются основаниями, называют основными оксидами. Например, Na2O, CuO являются основными оксидами, так каким соответствуют основания NaOH, Cu(OH)2. Как правило, основными оксидами могут быть оксиды металлов со степенью окисления +1, +2. Химическая связь здесь ионная.

Оксиды щелочных (Li, Na, К, Rb, Cs, Fr) и щелочно-земельных металлов (Са, Sr, Ba, Ra), взаимодействуя с водой, дают основания. Например:

К2О + Н2О = 2КОН

ВаО + H2O = Ва(ОН)2

Остальные основные оксиды с водой практически не взаимодействуют. Основные оксиды взаимодействуют с кислотами и дают соль и воду:

Fе 2 О 3 + 3Н 2 SО 4 = Fе 2 (SО 4) 3 + 3Н 2 О

Fе 2 О 3 + 6H + = 2Fе 3 + + 3Н 2 О

Основные оксиды реагируют с кислотными оксидами и дают соли:

FeO + SiO 2 = FeSiО 3 (t)

К и с л о т н ы е о к с и д ы. Оксиды, гидраты которых являются кислотами, называют кислотными. К кислотным относятся оксиды неметаллов и металлов со степенью окисления +4,+5, +6, +7. Например, N 2 O 3 , P 2 O 5 , СrО 3 , Mn 2 O 7 , CO 2 , V 2 O 5 , SO 3 , Сl 2 O 7 - кислотные оксиды, так каким соответствуют кислоты HNO 2 , Н 3 РО 4 , H 2 CrО 4 , НМnО 4 и т. д. (химическая связь здесь ковалентная и ионная). Большинство кислотных оксидов взаимодействует с водой и образует кислоты. Например:

SO 3 + H2O = H2SO4

Мn2O7+ H2O = 2HMnO4

SiO2 + H2O

Кислотные оксиды реагируют с основаниями (щелочами) и дают соль и воду:

N 2 O 5 + Ca(OH) 2 = Са(NО 3) 2 + H 2 O

N 2 O 5 + 2OH‾ = 2NО 3 ‾ + H 2 O

А м ф о т е р н ы е о к с и д ы. Оксиды металлов со степенью окисления +3, +4 и иногда +2,которые в зависимости от среды проявляют основные или кислотные свойства, т. е. реагируют с кислотами и основаниями, называют амфотерными. Им соответствуют гидраты, кислоты и основания. Например:

Zn(OH)2 ← ZnO → H2ZnO2

H2O Аl(ОН) 3 ← Аl 2 О 3 → Н 3 АlО 3 → HalO 2

Амфотерные оксиды реагируют с кислотами и основаниями:

Аl2Оз + 3Н2SO4 = Аl2 (SO4)з + 3H2O

Аl2Оз + 6H + = 2Al 3+ + 3H2O

Аl2Оз + 2NaOH + 3H2O = 2Na

Аl2Оз + 2OН‾ + 3H2O = 2[Аl(ОН)4]‾

При сплавлении А12Оз со щелочами образуются метаалюминаты:

сплавление Аl2Оз + 2NaOH → 2NaAlO2 + H2O

метаалюминат натрия

Аl2Оз + 2OН‾ = 2Аl O2‾ + H2O

Амфотерные оксиды с водой непосредственно не соединяются.

Гидроксиды

Химические соединения с общей формулой R (OH ) n называют гидроксидами, где R - атом или группа атомов с положительным зарядом.

В зависимости от типа электролитической диссоциации гидроксиды делятся на три группы: основания, кислоты и амфотерные гидроксиды. Например:

Ba(OH)2 ↔ Ва 2 + + 2ОН‾ основание

H2SO4 ↔ 2H + + SO2 2 ‾ кислота

Рb 2 + + 2ОН‾ ↔ Pb(ОН)2 ↔2H + + РbО2 2 ‾ амфотерный гидроксид

Просмотров