Сверхсильные импульсные магнитные поля. Магнитное поле Как создать электромагнитное поле

Одним из многочисленных физических методов лечения является магнитотерапия, показания и противопоказания этого терапевтического метода следует хорошо изучить, прежде чем начать курс лечения. Используемое в лечении магнитное поле подразделяют на статическое (постоянные магниты) и динамическое. Динамическое магнитное поле, вызывается электрическим током, протекающим в проводнике. В настоящее время, оно находит широкое применение в дополнительном лечении многих заболеваний.

Магнитотерапия — метод лечения с использованием магнитного поля с частотой 0-50 Гц или 0-60 Гц и магнитной индукции со значениями в диапазоне от 0,5 до 10 (миллитесл). Терапия проводится с помощью статического и динамического магнитного поля.

В статическом магнитном поле главную роль играют различного рода магниты, которые в настоящее время не так часто применяются в лечении. Современная медицина использует лечебное воздействие динамического магнитного поля (импульсного или переменного тока), возникающего при участии электрического тока, проходящего через проводник.

Научно доказано, что дефицит электромагнитной энергии в организме отвечает за замедление процессов обмена веществ, транспортировки питательных веществ и снижение работоспособности нервной системы. Кроме того, именно с дефицитом энергии возникает общее снижение настроения, работоспособности и потеря естественной жизненной силы человека.

Дефицит энергии может вызвать гораздо более серьезные последствия для здоровья организма. Такое состояние может спровоцировать или усилить симптомы болезней сердца, воспалительных процессов, ревматизма, а также неврологические заболевания и многие другие недуги.

Доказано, что наиболее эффективным способом противодействия заболеваниям, вызванным нехваткой энергии, является магнитотерапия.

Этот метод вызывает смещение ионов, в результате чего увеличивается электроотрицательность внутри клетки, что позволяет более эффективное поглощение и использование ею кислорода. Этот процесс носит название гиперполяризации.

Действие магнитного поля является равномерным, благодаря чему энергия проникает через все ткани организма, доходя до самых глубоких слоев. Магнитная терапия — процедура совершенно безболезненная, не вызывающая никаких побочных эффектов даже в перспективе длительного лечения. Иногда в начале терапии наблюдается лишь временное и краткосрочное осложнение симптомов заболевания.

Как действует магнитное поле?

Применение магнитного поля вызывает изменения в каждой клетке и ткани организма, поскольку оно проникает через все тело человека. Любые ионы, которые находятся в клетках и коллоидных системах, чувствительны и подвержены воздействию магнитного поля. Под влиянием магнитного поля происходят следующие процессы:

  • ритмичное перемещение ионов в клетках человеческого тела;
  • гиперполяризация клеточной мембраны;
  • благотворное влияние на обмен веществ и энергетические процессы.

Импульсное магнитное поле приводит в свою очередь к:

  • нормализации электрического потенциала покоя клеточной мембраны;
  • улучшению динамики ионов, мигрирующих через мембрану;
  • улучшению использования кислорода через клетку;
  • повышению энергетического потенциала.

Что лечит магнитное поле?

В зависимости от показаний и особенностей организма в лечении подбирается определенная форма импульса (прямоугольная, треугольная или синусоидальная). При лечении магнитным полем предполагается, что:

  • прямоугольные импульсы применяются в момент, когда патологический процесс распространяется в костной ткани;
  • импульсы треугольной формы находят применение в лечении суставного хряща, связок и сухожилий;
  • импульсы синусоидальные применяется в ситуациях, когда требуют лечения мышцы и нервы.

Когда и в каком состоянии болезни можно применить магнитное поле? В случае острых состояний заболевания применяются частоты импульсов от 1-5 Гц, интенсивность магнитного поля 0,5-3 мТ (милитесел). В подострых состояниях лечение проводят при частоте 5-20 Гц, напряженности магнитного поля 3-5 мТ, при хронических болезненных состояниях применяются частоты от 20-50 Гц и напряженность магнитного поля 6-10 мТ.

Следует иметь в виду, что напряженность магнитного поля должна равняться 40 % от максимальной величины принятой дозы. Во время 2 курса лечения ее силу можно увеличить до 70 %, а на 3 курсе процедур ее увеличивают до полной дозы.

Время процедуры, проводимое с помощью магнитного поля, может составлять от 15 до 30 минут, но может длиться и до 1 часа. Процедуры выполняются сериями от 15 до нескольких десятков процедур. В течение первых 5 -10 процедур терапию применяют ежедневно, а потом можно проводить от 2-3 процедур в течение недели.

Кому можно, а кому не стоит?

Принципы лечения магнитным полем:

  • лечение с помощью магнитного поля должно проводиться в одно и то же время дня;
  • процедуры не следует применять во второй половине дня, или вечером, из-за возникновения сонливости, в то время как у пожилых людей, наоборот, бессонницы;
  • пациент должен перед проведением процедуры снять часы и все металлические предметы;
  • при лечении магнитным полем не нужно раздеваться, можно оставаться в одежде.

Показаниями для выполнения процедуры магнитным полем, являются следующие:

  • дегенеративные заболевания крупных суставов (конечностей) и суставов позвоночника;
  • воспаления суставов и околосуставных тканей;
  • ревматоидный артрит (РА);
  • посттравматические состояния и спортивные травмы: переломы (болезнь Зудека), вывихи, растяжения с повреждением мышц, связок и суставной сумки;
  • трудно заживающие раны, ожоги;
  • нарушения периферического кровообращения;
  • воспаление нервов (например, невралгии седалищного нерва);
  • остеопороз;
  • нарушения обмена веществ;
  • бронхит и синусит пазух носа;
  • воспаления яичников;
  • язвы и трофические изменения голеней.

Процедуры с применением магнитного поля являются безопасными.

Применение процедур даже в течение очень долгого времени не вызывает неблагоприятных последствий.

Следует, однако, иметь в виду, что существует возможность обострения заболеваний после первых нескольких процедур, которые со временем проходят.

Значительным облегчением для пациентов является возможность применения магнитотерапии при травмах без снятия повязки, и даже гипса.

К самым распространенным противопоказаниям для лечения магнитным полем, относятся:

  • беременность;
  • раковые болезни;
  • лечение ионизирующим излучением (лучевая терапия) и радиологические исследования;
  • имплантированные электронные имплантаты, например, кардиостимулятор;
  • тяжелые заболевания сердца и сердечно-сосудистой системы;
  • облитерирующий тромбофлебит;
  • склонность к кровотечениям;
  • активный туберкулез;
  • острые бактериальные и вирусные инфекции;
  • сахарный диабет;
  • тиреотоксикоз;
  • эпилепсии;
  • стригущий лишай.

Магнитотерапия имеет множество применений и незначительное число противопоказаний. Не следует применять магнитотерапию и в случае тяжелых системных заболеваний.

Терапия магнитным полем, имеет неоценимое значение в борьбе с длительными болевыми ощущениями. Показывает при этом отличные противовоспалительные свойства.

Применение магнитной терапии способствует общему расслаблению организма, и снижению чрезмерного мышечного напряжения. Она ускоряет и регулирует периферическое кровообращение и ускоряет обмен веществ, что применяется в лечебных процедурах для похудения тела. Применяя магнитотерапию после консультации со специалистом, вы сможете оздоровить свой организм.

Введение 1

(1) Наиболее очевидным механическим явлении при электрических и магнитных опытах является взаимодействие, благодаря которому тела, находящиеся в определенных состояниях, приводят друг друга в движение, несмотря на наличие между ними довольно значительного расстояния.

Поэтому для научной трактовки этих явлений прежде всего необходимо установить величину и направление действующей между телами силы, и если найдено, что эта сила в какой-то мере зависит от относительного положения тел и от их электрического или магнитного состояния, то с первого взгляда кажется естественным объяснение этих фактов путем допущения существования чего-то другого, находящегося в покое или в движении в каждом теле, образующего его электрическое или магнитное состояние и способного действовать на расстоянии в соответствии с математическими законами.

Таким путем возникли математические теории статического электричества, магнетизма, механического действия между проводниками, несущими токи, и теория индукции токов. В этих теориях сила, действующая между двумя телами, рассматривается лишь как зависящая от состояния тел и их относительного положения, окружающая среда не принимается во внимание.

Эти теории допускают более или менее явным образом существование субстанций, частицы которых обладают способностью действовать друг на друга на расстоянии. Наиболее полная разработка теории этого рода принадлежит В. Веберу 2 , который включил в нее как электростатические, так и электромагнитные явления.

Сделав это, он, однако, вынужден был допустить, что сила, действующая между двумя электрическими частичками, зависит не только от их взаимного расстояния, но и от их относительной скорости.

Эта теория так, как она была развита Вебером и Нейманом 3 , чрезвычайно остроумна и удивительно исчерпывающа в ее применении к явлениям статического электричества, электромагнитных притяжений, индукции токов и диамагнитных явлений; эта теория для нас тем более авторитетна, что она была руководящей идеей того, кто сделал столь большие успехи в практической части науки об электричестве как путем введения постоянной системы единиц в электрические измерения, так и путем фактического определения электрических величин с неизвестной до сих пор точностью 4 .

(2) Однако механические трудности, связанные с допущением существования частиц, действующих на расстоянии с силами, зависящими от их скоростей, таковы, что они не дают мне возможности рассматривать эту теорию как окончательную, хотя возможно, что она и сейчас может быть полезной в отношении установления координации между явлениями. Поэтому я предпочел искать объяснения фактов в другом направлении, предполагая, что они являются результатом процессов, которые происходят как в окружающей тела среде, так и в самих возбужденных телах, и пытаясь объяснить взаимодействия между удаленными друг от друга телами без допущения существования сил, способных непосредственно действовать на заметных расстояниях.

(3) Та теория, которую я предлагаю, может быть названа теорией электромагнитного поля, потому что она имеет дело с пространством, окружающим электрические или магнитные тела, и она может быть названа также динамической теорией, поскольку она допускает, что в этом пространстве имеется материя, находящаяся в движении, посредством которой и производятся наблюдаемые электромагнитные явления.

(4) Электромагнитное поле - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии. Это пространство может быть наполнено любым родом материи, или мы можем попытаться удалить из нее всю плотную материю, как это имеет место в трубках Гейслера 5 или в других, так называемых вакуумных. Однако всегда имеется достаточное количество материи для того, чтобы воспринимать и передавать волновые движения света и тепла. И так как передача излучений не слишком сильно изменяется, если так называемый вакуум заменить прозрачными телами с заметной плотностью, то мы вынуждены допустить, что эти волновые движения относятся к эфирной субстанции, а не к плотной материи, присутствие которой только в какой-то мере изменяет движение эфира. Мы поэтому имеем некоторое основание предполагать, исходя из явлений света и тепла, что имеется какая-то эфирная среда, заполняющая пространство и пронизывающая все тела, которая обладает способностью быть приводимой в движение, передавать это движение от одной своей части к другой и сообщать это движение плотной материи, нагревая ее и воздействуя на нее разнообразными способами.

(5) Энергия, сообщенная телу нагреванием, должна была ранее существовать в движущейся среде, ибо волновые движения оставили источник тепла за некоторое время до того, как они достигли самого нагреваемого тела, и в течение этого времени энергия должна была существовать наполовину в форме движения среды и наполовину в форме упругого напряжения. Исходя из этих соображений, профессор В. Томсон 6 доказывал, что эта среда должна обладать плотностью, сравнимой с плотностью обычной материи, и даже определил нижнюю границу этой плотности.

(6) Поэтому мы можем как данное, выведенное из отрасли науки, независимо от той, с которой мы (в рассматриваемом случае) имеем дело, принять существование проникающей среды, обладающей малой, но реальной плотностью, обладающей способностью быть приводимой в движение и передавать движения от одной части к другой с большой, но не бесконечной скоростью.

Следовательно, части этой среды должны быть так связаны, что движение одной части каким-то способом зависит от движения остальных частей, и в то же самое время эти связи должны быть способны к определенному роду упругого смещения, поскольку сообщение движения не является мгновенным, а требует времени.

Поэтому эта среда обладает способностью получать и сохранять два вида энергии, а именно «актуальную» энергию, зависящую от движения ее частей, и «потенциальную» энергию, представляющую собой работу, которую среда выполнит в силу своей упругости, возвращаясь к первоначальному состоянию, после того смещения, которое она испытала.

Распространение колебаний состоит в непрерывном преобразовании одной из этих форм энергии в другую попеременно, и в любой момент количество энергии во всей среде разделено поровну, так что половина энергии является энергией движения, а другая половина - энергией упругого напряжения.

(7) Среда, имеющая такого рода структуру, может быть способна к другим видам движения и смещения, чем те, которые обусловливают явления света и тепла; некоторые из них могут быть таковы, что они воспринимаются нашими чувствами при посредстве тех явлений, которые они производят.

(8) Сейчас мы знаем, что светоносная среда в отдельных случаях испытывает действие магнетизма, так как Фарадей 7 открыл, что в тех случаях, когда плоско поляризованный луч проходит через прозрачную диамагнитную среду в направлении магнитных силовых линий, образуемых магнитами или токами, то плоскость поляризации начинает вращаться.

Это вращение всегда происходит в том направлении, в котором положительное электричество должно проходить вокруг диамагнитного тела для того, чтобы образовать действующее магнитное поле.

Верде 8 с тех пор открыл, что если заменить диамагнитное тело парамагнитным, например раствором треххлористого железа в эфире, то вращение происходит в обратном направлении.

Профессор В. Томсон 9 Так указал, что никакое распределение сил, действующих между частями какой-либо среды, единственным движением которой является движение световых колебаний, недостаточно для объяснения этих явлений, но что мы должны допустить существование в среде движения, зависящего от намагничивания, в дополнение к тому колебательному движению, которое представляет собой свет.

Совершенно правильно, что вращение плоскости поляризации вследствие магнитного воздействия наблюдалось только в средах, обладающих заметной плотностью. Но свойства магнитного поля не так уж сильно изменяются при замене одной среды другой или вакуумом, чтобы позволить нам допустить, что плотная среда делает нечто большее, чем простое изменение движения эфира. Мы поэтому имеем законное основание поставить вопрос: не проходит ли движение эфирной среды везде, где бы ни наблюдались магнитные эффекты? Мы имеем некоторое основание предположить, что это движение является движением вращения, имеющим своей осью направление магнитной силы.

(9) Мы можем теперь обсудить другое явление, наблюдаемое в электромагнитном поле. Когда тело движется, пересекая линии магнитной силы, оно испытывает то, что называют электродвижущей силой; два противоположных конца тела электризуются противоположным образом, и электрический ток стремится пройти через тело. Когда электродвижущая сила достаточно велика и действует на некоторые химически сложные тела, она их разлагает и заставляет одну из компонент направляться к одному концу тела, а другую - в прямо противоположную сторону 10 .

В данном случае мы имеем очевидное проявление силы, вызывающей электрический ток вопреки сопротивлению и электризующей концы тела противоположным образом; это особое состояние тела поддерживается только воздействием электродвижущей силы, и как только эта сила устраняется, оно стремится с равной и противоположно направленной силой вызывать обратный ток через тело и восстановить его первоначальное электрическое состояние. Наконец, если эта сила достаточно велика, она разлагает химические соединения и перемещает компоненты в двух противоположных направлениях, в то время как их естественной тенденцией является тенденция к взаимному соединению с такой силой, которая может породить электродвижущую силу обратного направления.

Эта сила, следовательно, является силой, воздействующей на тело по причине его движения через электромагнитное поле или вследствие изменений, возникающих в самом этом поле; действие этой силы проявляется или в порождении тока и нагревании тела, или в разложении тела, или, если она не может сделать ни того, ни другого, то в приведении тела в состояние электрической поляризации - состояние вынужденное, при котором концы тела наэлектризованы противоположным образом и от которого тело стремится освободиться, как только будет удалена возмущающая сила.

(10) Согласно предлагаемой мною теории, эта «электродвижущая сила» является силой, возникающей при передаче движения от одной части среды к другой, так что именно благодаря этой силе движение одной части вызывает движение другой. Когда электродвижущая сила действует вдоль проводящего контура, она производит ток, который в том случае, если он встречает сопротивление, вызывает постоянное превращение электрической энергии в тепло; последнее уже нельзя восстановить в форме электрической энергии каким-либо обращением процесса.

(11) Но когда электродвижущая сила действует на диэлектрик, она создает состояние поляризации его частей, которое аналогично поляризации частей массы железа под влиянием; магнита и которое подобно магнитной поляризации может быть описано как состояние, в котором каждая частица имеет противоположные концы в противоположных состояниях 11 .

В диэлектрике, находящемся под действием электродвижущей: силы, мы можем представлять, что электричество в каждой молекуле так смещено, что одна сторона молекулы делается положительно наэлектризованной, а другая - отрицательно наэлектризованной, однако электричество остается полностью связанным с молекулой и не переходит от одной молекулы к другой.1 Эффект этого воздействия на всю массу диэлектрика выражается! в общем смещении электричества в определенном направлении. 12 Это смещение не равноценно току, потому что, когда оно достигает определенной степени, оно остается неизменным, но оно есть начало тока, и его изменения образуют токи в положительном или отрицательном направлениях сообразно тому, увеличивается или уменьшается смещение 12 . Внутри диэлектрика нет признаков какой-либо электризации, так как электризация поверхности любой молекулы нейтрализуется противоположной электриза цией поверхности молекулы, находящейся в соприкосновении с нею; но на граничной поверхности диэлектрика, где электризация не нейтрализуется, мы обнаруживаем явления, указывающие на положительную или отрицательную электризацию этой поверхности. Отношение между электродвижущей силой и величиной электрического смещения, которое оно вызывает, зависит от природы диэлектрика, причем та же самая электродвижущая сила обычно производит большее электрическое смещение в твердых диэлектриках, как, например, в стекле или сере, чем в воздухе.

(12) Здесь, таким образом, мы усматриваем еще один эффект электродвижущей силы, а именно электрическое смещение, которое согласно нашей теории является некоторым родом упругой податливости действию силы, похожей на ту, которая имеет место в сооружениях и машинах по причине несовершенной жесткости связей 13 .

(13) Практическое исследование индуктивной емкости диэлектриков 14 делается затруднительным вследствие двух мешающих явлений. Первое заключается в проводимости диэлектрика, которая, будучи во многих случаях исключительно малой, тем не менее не является совершенно неощутимой. Второе - явление, называемое электрической абсорбцией 15 и состоящее в том, что, когда диэлектрик подвергается воздействию электродвижущей силы, электрическое смещение постепенно увеличивается, а если электродвижущая сила устраняется, диэлектрик не возвращается моментально в свое первоначальное состояние, но разряжает только часть сообщенной ему электризации и, будучи предоставленным самому себе, постепенно приобретает электризацию на своей поверхности, тогда как внутренность диэлектрика постепенно деполяризуется. Почти все твердые диэлектрики обнаруживают это явление, которое объясняет остаточный заряд лейденской банки и некоторые явления в электрических кабелях, описанные Ф. Дженкиным 16 .

(14) Мы встречаемся здесь с двумя другими родами податливости, отличными от упругости идеального диэлектрика, которую мы сравнивали с идеально упругим телом. Податливость, которая относится к проводимостям, можно сравнить с податливостью вязкой жидкости (иначе говоря, жидкости, имеющей большое внутреннее трение) или мягкого тела, в котором малейшая сила производит постоянное изменение формы, увеличивающееся вместе со временем действия силы. Податливость, связанная с явлением электрической абсорбции, может быть сравнена с податливостью упругого тела клеточной структуры, содержащего густую жидкость в своих полостях. Такое тело, будучи подвергнутым давлению, сжимается постепенно, а когда давление устраняется, тело не сразу принимает свою прежнюю форму, потому что упругость материи тела должна постепенно преодолеть вязкость жидкости, прежде чем восстановится полное равновесие. Некоторые твердые тела, хотя и не имеют той структуры, о которой мы говорили выше, обнаруживают механические свойства такого рода 17 , и вполне возможно, что эти же самые вещества в качестве диэлектриков обладают аналогичными электрическими свойствами, а если они являются магнитными веществами, то обладают соответствующими свойствами, относящимися к приобретению, удержанию и потере магнитной полярности 18 .

(15) Поэтому кажется, что некоторые явления электричества и магнетизма приводят к тем же заключениям, что и оптические явления, а именно, что имеется эфирная среда, проникающая все тела и изменяемая только в некоторой степени их присутствием; что части этой среды обладают способностью быть приведенными в движение электрическими токами и магнитами; что это движение сообщается от одной части среды к другой при помощи сил, возникающих от связей этих частей; что под действием этих сил возникает определенное смещение, зависящее от упругости этих связей, и что вследствие этого энергия в среде может существовать в двух различных формах, одна из которых является актуальной энергией движения частей среды, а другая - потенциальной энергией, обусловленной связями частей в силу их упругости.

(16) Отсюда мы приходим к концепции сложного механизма, способного к обширному разнообразию движений, но в то же самое время связанного так, что движение одной части зависит, согласно определенным отношениям, от движения других частей, причем эти движения сообщаются силами, возникающими из относительного смещения связанных между собой частей вследствие упругости связей. Такой механизм должен подчиняться общим законам динамики, и мы должны иметь возможность вывести все следствия этого движения, предполагая, что известна форма отношения между движениями частей. (17) Мы знаем, что, когда электрический ток течет в проводящей цепи, прилегающая часть поля характеризуется известными магнитными свойствами, и если в поле находятся две цепи, магнитные свойства поля, относящиеся к обоим токам, комбинируются. Таким образом, каждая часть поля находится в связи с обоими токами, а оба тока связываются друг с другом в силу их связи с намагничиванием поля. Первым результатом этой связи, который я предлагаю изучить, является индукция одного тока другим и индукция вследствие движения проводников в поле.

Другим, вытекающим отсюда результатом является механическое взаимодействие между проводниками, по которым текут токи. Явление индукции токов было выведено из механического взаимодействия проводников Гельмгольцем 19 и Томсоном 20 . Я следовал обратному порядку и вывел механическое взаимодействие из законов индукции. Я затем описал экспериментальные методы определения величины L, М, N 21 , от которых зависят эти явления.

(18) Затем я прилагаю явления индукции и притяжения токов к исследованию электромагнитного поля и к установлению системы магнитных силовых линий, указывающих на их магнитные свойства. Исследуя то же самое поле при помощи магнита, я показываю распределение его эквипотенциальных магнитных поверхностей, пересекающих силовые линии под прямыми углами.

Чтобы ввести эти результаты в сферу символического исчисления 22 , я выражаю их в форме общих уравнений электромагнитного поля.

Эти уравнения выражают:
(A) Соотношение между электрическим смещением, током истинной проводимости и полным током, составленным из обоих.
(B) Соотношение между магнитными силовыми линиями и коэффициентами индукции цепи, как они уже выведены из законов индукции.
(C) Соотношение между силой тока и его магнитными действиями в соответствии с электромагнитной системой единиц.
(D) Значение электродвижущей силы в каком-либо теле, возникающей от движения тела в поле, изменения самого поля и изменения электрического потенциала от одной части поля к другой.
(E) Соотношение между электрическим смещением и электродвижущей силой, которая его производит.
(F) Соотношение между электрическим током и проводящей его электродвижущей силой.
(G) Соотношение между количеством свободного электричества в любой точке и электрическими смещениями в окрестности ее.
(Н) Соотношение между увеличением или уменьшением свободного электричества и электрическими токами поблизости Всего таких уравнений имеется 20, содержащих 20 переменных величин.

(19) Затем я выражаю через эти величины внутреннюю энергию электромагнитного поля, как зависящую частично от магнитной и частично от электрической поляризации в каждой точке 23 .

Отсюда я определяю действующую механическую силу, во-первых,- на подвижный проводник, по которому течет электрический ток; во-вторых,- на магнитный полюс; в-третьих,- на наэлектризованное тело.

Последний результат, а именно механическая сила, действующая на наэлектризованное тело, дает начало независимому методу электрического измерения, основанному на электрических действиях. Отношение между единицами, применяемыми в этих двух методах, оказывается зависящим от того, что я назвал «электрической упругостью» среды, и является скоростью, которая была экспериментально определена Вебером и Кольраушем.

Затем я показываю, как рассчитывать электростатическую емкость конденсатора и удельную индуктивную емкость диэлектрика.

Случай с конденсатором, состоящим из параллельных слоев веществ, обладающих различными электрическими сопротивлениями и индуктивными емкостями, изучается в дальнейшем и показывается, что именуемое электрической абсорбцией явление, вообще говоря, будет иметь место, т. е. если конденсатор будет внезапно разряжен, то через короткое время он обнаружит наличие остаточного заряда.

(20) Общие уравнения в дальнейшем применяются к случаю магнитного возмущения, распространяющегося через непроводящее поле, и показывается, что единственные возмущения, которые могут распространяться таким образом, это возмущения, поперечные к направлению распространения, и что скорость распространения является скоростью v , определенной экспериментальным путем из опытов, подобных опыту Вебера, которая выражает количество электростатических единиц электричества, содержащихся в одной электромагнитной единице.

Эта скорость так близка к скорости света, что, по-видимому, мы имеем серьезные основания сделать заключение, что сам по себе свет (включая лучистую теплоту и другие излучения) является электромагнитным возмущением в форме волн, распространяющихся через электромагнитное поле согласно законам электромагнетизма 24 . Если это так, то совпадение между упругостью среды, вычисленной, с одной стороны, из быстрых световых колебаний и, с другой стороны, найденной медленным процессом электрических экспериментов, показывает, как совершен ны и правильны должны быть упругие свойства среды, если она не заполнена какой-либо материей, более плотной, чем воздух. Если тот же самый характер упругости сохраняется в плотных прозрачных телах, то оказывается, что квадрат показателя преломления равен произведению удельной диэлектрической емкости и удельной магнитной емкости 25 . Проводящие среды быстро поглощают такие излучения и поэтому обычно являются непрозрачными.

Концепция распространения поперечных магнитных возмущений с исключением продольных определенно проводится профессором Фарадеем 26 в его «Мыслях о лучевых вибрациях». Электромагнитная теория света в том виде, в каком она предложена им, является такой же по существу, как и та, которую я развиваю в настоящем докладе, за исключением того, что в 1846 г. не имелось данных для расчета скорости распространения 27 .

(21) Общие уравнения затем применяются к расчету коэффициентов взаимной индукции двух круговых токов и коэффициента самоиндукции катушки.

Отсутствие равномерного распределения тока в различных частях сечения провода в момент начала течения тока, как я полагаю, исследуется впервые, и найдена соответствующая поправка для коэффициента самоиндукции.

Эти результаты применяются к расчету самоиндукции катушки, применяемой в опытах Комитета Британской ассоциации по стандартам электрического сопротивления, и полученные величины сравниваются с величинами, определенными опытным путем.

* В кн.: Д. К· Максвелл Избранные сочинения по теории электромагнитного поля. М, 1954, с. 251-264.
1 Royal Society Transactions, т. CLV, 1864
2 Вебер Вильгельм (1804-1891) - немецкий физик, вывел элементарный закон электродинамики дальнодействия; вместе с Кольраушем Рудольфом (1809-1858) впервые измерил в 1856 г. отношение электростатической и магнитной единиц заряда, оказавшееся равным скорости света (3- 108 м/с).
3 Electrodynamische Maassbestimmungen, Leipzig. Trans, т. 1, 1849 и Taylor"s Scientific Memoirs, т. V, глава XIV. »Explicare tentatur quomodo fiat ut lucis planum polarizationis per vires electricas vel magneticas declinetur», Halis Saxonum, 1858.
4 Имеются в виду опыты Вебера и Кольрауша.
5 Гейслер Генрих (1814-1879)-немецкий физик, сконструировавший ряд физических приборов: ареометры, ртутные насосы, вакуумные трубки - так называемые гейслеровы трубки и др.
6 Томсон Вильям (лорд Кельвин) (1824-1907) -выдающийся английский физик, один из основателей термодинамики; ввел абсолютную шкалу температур, носящую его имя, развил теорию электрических колебаний, получив формулу периода колебательного контура, автор многих других открытий и изобретений, сторонник механистической картины физического мира. W. Thomson. «On the Possible Density of the Lumminiterous Medium and on the Mechanical Value oi a Cubis Mile of Sunlight», Transactions of the Royal Society of Edinburgh, c. 57, 1854.
7 Так Максвелл называет кинетическую энергию.
8 «Exp. Res.», серия XIX. Верде Эмиль (1824-1866) - французский физик, экспериментально обнаруживший пропорциональность магнитного вращения плоскости поляризации квадрату длины волны света. Verdet, Comptes rendus, 1856, второе полугодие, с 529 и 1857, первое полугодие, с. 1209.
9 Так W. Thomson, Proceedings of the Royal Society, июнь 1856 и июнь 1861.
10 Максвелл придерживается устаревших представлений о разложении электролитов электрическим полем.
11 Faraday, «Exp. Res », серия XI; Mossotti, Mem. della Soc. Italina (Mode-па), т. XXIV, часть 2, с. 49.
12 Здесь Максвелл вводит понятие тока смещения.
13 В иллюстративных целях используются модели теории упругости.
14 Так Максвелл называет диэлектрическую проницаемость вещества.
15 Faraday, «Exp Res» (1233-1250).
16 F. Jenkm Reports of the British Association, 1859, c. 248, а также Report of Committee of Board of Trade on Submarine Cables, c. 136 и 464.
17 Как, например, состав из клея, патоки и т. п., из которого делаются небольшие пластические фигурки, которые, будучи деформированы, лишь постепенно приобретают свои первоначальные очертания.
18 Еще один пример того, как Максвелл использует аналогии из теории упругости.
19 Русское издание, Гельмгольц. «О сохранении силы». М., 1922.
20 W. Thomson. Reports of the British Association, 1848; Phil. Mag., декабрь 1851.
21 L, M, N - некоторые геометрические величины, введенные Максвеллом для описания зависимости взаимодействия проводников с током: L зависит от формы первого проводника, N - от формы второго, а М - от относительного положения этих проводников.
22 Это «символическое исчисление» заимствовано из работ Гамильтона по векторному и операторному анализу.
23 Эти уравнения в современном виде (в СИ) выглядят так: (А)-это не уравнение, а определение вектора плотности полного тока:
24 Здесь Максвелл подчеркивает электромагнитную природу света.
25 Т. е. п2 = е|л.
26 Phil. Mag., май 1846 г. или «Exp. Res.», т. III.
27 Первые надежные значения величины скорости света были получены в опытах И. Физо (1849) и Л. Фуко (1850).

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля . Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец - южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные - притягиваются (рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса , т. е. будет постоянным магнитом (рис. 2 ). Оба полюса - северный и южный, - неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются - у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

Опыт Эрстэда. Магнитное поле тока

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты . Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (рис. 5 ). Направление линий определяется правилом правого винта:

Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике .

Силовой характеристикой магнитного поля является вектор магнитной индукции B . В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид - катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита (рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления - к наблюдателю - обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным - левый.

Магнитное поле внутри соленоида является однородным - вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B .

Направление силы определяется правилом левой руки :

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь - перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9 ).

Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Отношение не зависит от свойств проводника и характеризует само магнитное поле.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

В системе СИ единицей индукции магнитного поля служит тесла (Тл):

Магнитное поле. Таблицы, схемы, формулы

(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)

Хорошо известно широкое применение магнитного поля в быту, на производстве и в научных исследованиях. Достаточно назвать такие устройства, как генераторы переменного тока, электродвигатели, реле, ускорители элементарных частиц и различные датчики. Рассмотрим подробнее, что собой представляет магнитное поле и как оно образуется.

Что такое магнитное поле - определение

Магнитное поле - это силовое поле, действующее на движущиеся заряженные частицы. Размер магнитного поля завит от скорости его изменения. Согласно этому признаку выделяют два типа магнитного поля: динамическое и гравитационное.

Гравитационное магнитное поле возникает только вблизи элементарных частиц и формируется в зависимости от особенностей их строения. Источниками динамического магнитного поля являются движущиеся электрические заряды или заряженные тела, проводники с током, а также намагниченные вещества.

Свойства магнитного поля

Великому французскому ученому Андре Амперу удалось выяснить два основополагающих свойства магнитного поля:

  1. Основное отличие магнитного поля от электрического и его основное свойство состоит в том, что оно носит относительный характер. Если вы возьмете заряженное тело, оставите его неподвижным в какой-либо системе отсчета и поместите рядом магнитную стрелку, то она будет, как обычно, указывать на север. То есть она не обнаружит никакого поля, кроме земного. Если же вы начнете перемещать это заряженное тело относительно стрелки, то она начнет поворачиваться - это говорит о том, что при движении заряженного тела возникает еще и магнитное поле, кроме электрического. Таким образом, магнитное поле появляется тогда и только тогда, когда есть движущийся заряд.
  2. Магнитное поле действует на другой электрический ток. Так, обнаружить его можно, проследив движение заряженных частиц, - в магнитном поле они будут отклоняться, проводники с током будут двигаться, рамка с током поворачиваться, намагниченные вещества смещаться. Здесь следует вспомнить магнитную стрелку компаса, обычно окрашенную в синий цвет, - ведь это просто кусочек намагниченного железа. Он всегда ориентируется на север, потому что Земля обладает магнитным полем. Вся наша планета является огромным магнитом: на Северном полюсе находится южный магнитный пояс, а на Южном географическом полюсе находится северный магнитный полюс.

Кроме этого, к свойствам магнитного поля относят следующие характеристики:

  1. Сила магнитного поля описывается магнитной индукцией - это векторная величина, определяющая, с какой силой магнитное поле влияет на движущиеся заряды.
  2. Магнитное поле может быть постоянного и переменного типа. Первое порождается не изменяющимся во времени электрическим полем, индукция такого поля также неизменна. Второе чаще всего генерируется при помощи индукторов, питающихся переменным током.
  3. Магнитное поле не может быть воспринято органами чувств человека и фиксируется только специальными датчиками.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

"Анализ задачи общего воздействия динамическим магнитным полем на человека и формирование требований на технические средства комплексной магнитотерапии"

МИНСК, 2008


Воздействию магнитных полей на организм человека посвящено большое число работ и, хотя физика воздействия до сих пор проявлена слабо, имеется значительный ряд исследований по установлению функциональных связей состояния организма человека с параметрами магнитных полей. На повестке дня стоит вопрос формирования динамических магнитных полей, имеющих определенную функциональную направленность, прежде всего для лечения различных заболеваний. Причем формирование магнитных полей в локальной области уже не отвечает многим требованиям медицины. Требуется формирование динамических магнитных полей вокруг всего организма человека вначале как физиотерапевтической процедуры, а в дальнейшем и как фактора среды обитания.

Методологическое, математическое, физиологическое и, наконец, техническое решение этой задачи для формирования магнитных полей явилось бы прецедентом решения аналогичных задач для других видов полей и, в конечном итоге, привело бы к решению глобальной задачи формирования нужной структуры физических полей вокруг человека, наличие которых помогло бы ему справиться с болезнями. Для развития рассматриваемого направления с целью повышения эффективности лечения, расширения класса заболеваний, охватываемых системами магнитотерапии, требуется решение следующих вопросов:

· разработка единичного универсального излучателя магнитного поля, методики его расчета и оптимизации параметров в соответствии с заданными критериями;

· разработка способов формирования оптимальной конфигурации поля в целом, соответствующей заданной методике лечения;

· конструирование эффективных технических средств для создания заданных полей вокруг человека;

· исследование механизмов воздействия динамических магнитных полей (ДМП) на организм человека и его важнейшие функции;

· разработка эффективных каналов обратной связи и отыскание их параметров с целью автоматизированного управления характеристиками ДМП в ходе воздействия на основе измерения реакцией пациента.

В настоящем разделе сконцентрировано внимание на формировании динамических магнитных полей вокруг всего человека. Под динамическим магнитным полем будем понимать поле, изменяющееся во времени и в пространстве заданного объема (в данном случае внутри и вокруг человека) и имеющее ячеистую структуру, дискретность которой определяется элементами объекта восприятия (например, органы, сосуды, ткани и т.п.), что позволяет обеспечить достаточную независимость управления векторами магнитного поля в соседних ячейках структуры.

Реализация этой идеи распадается на две задачи. Первая из них связана с техническим решением формирования в заданной локальной области пространства ничтожно малого объема (физическая точка, далее - просто точка) вектора магнитной индукции, локализацией выделенных точек, формированием объемных матриц векторов магнитного поля, локализацией точек с учетом формы тела человека и его органов, обеспечивающей необходимое распределение магнитного поля как внутри тела человека, так и на поверхности. Эта задача обусловливает разработку и создание источников магнитного поля, определение их числа, размеров, пространственного расположения, взаимодействия и конфигурации. Внешним проявлением решения данной задачи является вид объема, в котором размешается человек. Это может быть магнитная комната, магнитный бокс, магнитная камера, магнитная кушетка, магнитный ложемент, магнитный скафандр и др. При этом конструкция объема размещения источников излучения играет не последнюю роль в эффективности воздействия, а тем более в системах, обеспечивающих формирование заданной конфигурации динамического магнитного поля в заданной области пространства.

Вторая задача связана с системой электронного формирования и управления электрическими токами и напряжениями с целью получения заданной динамики (перемещения во времени и пространстве) векторов магнитной индукции в каждой ячейке заданного объема. Рассмотрим эти задачи раздельно.

Формирование метрики векторов магнитного поля

Многомерный вектор динамического магнитного поля D - {Иm, Im} составлен из многомерного вектора пространственного расположения индукторов Иm = {И1, И2,... Иs} и многомерного вектора токов, протекающих через индукторы, Iт = {I1, I2,... Iп}, где s - число индукторов, n - число каналов аппарата. В свою очередь последний составлен из векторов канальных токов Ii = {I,Р, Т,t}, где I - интенсивность, Р - полярность, Т - время подключения, t - текущее время.

Таким образом поставленная задача может быть формализована в следующих этапах:

· синтез пространственного расположения излучателей магнитного поля и формирование параметров одиночного базового излучателя;

· синтез канала формирования тока, изменяющегося во времени по заданному закону в определенном диапазоне интенсивностей и спектра, отражающему закон изменения магнитного поля во времени;

· синтез многомерности каналов, имеющей заданную корреляционную зависимость, отражающей заданную функциональную связь между локалиями и формирующей закон изменения поля в пространстве.

Наложим некоторые ограничения на решаемую задачу синтеза с учетом биологических свойств объекта восприятия и технической реализуемости системы.

Изменения магнитного поля во времени и в пространстве должны иметь периодический или квазипериодический характер, хотя и со сложным периодом формирования. Это связано с периодичностью основных биоритмов объекта (пульс, a-ритм, B-ритм) и периодичностью основной среды обитания (день, ночь и т.п.).

Изменения во времени и в пространстве должны учитывать периодичность биоритмов объекта либо с целью синхронизации с ними, либо наоборот, с целью десинхронизации.

Скорость изменения магнитного поля во времени и в пространстве должна быть одного порядка с основными скоростями функционирования организма объекта на макро-уровне (скорость кровотока, распространение ощущений, сокращение мышц и т.п.) и перекрывать их на достаточные значения в обе стороны.

Дискретность структуры динамического поля во времени, в пространстве и по уровню должны быть одного порядка и функционально связаны с обобщенной дискретностью макроэлементов объекта воздействия (органов человека).

Метрика динамического поля в пространстве должна быть согласована с метрикой макроэлементов и процессов в человеке. Рассмотрим задачу формирования динамического процесса во времени в одной точке пространства. Процесс квантования по уровню и дискретизации по времени.

Рисунок 1 – Диаграмма формирования полей, дисентируясь на следующие кратных по уровню и во времени рассуждения.

Формирование ячеистой структуры магнитного поля на одной конечности человека длиной L ограничено, кроме всего прочего, способностью в концентрации поля. Так как значение индукции магнитного поля в однородной среде убывает пропорционально квадрату расстояния, то по длине конечности в качестве размера локальной ячейки примем область, на границах которой поле убывает в два раза. Если принять, что магнитная индукция в центре ячейки Вц = Bi, а на границе Вг - Вi/2, можно определить ее размер D, исходя из размера ячейки Rя и размера Ri области формирования однородного поля:

(1)

Из последнего соотношения определим размер эффективного действия ячейки:

(2)

Тогда размер ячейки составит

Техническая реализуемость диктует размеры источника излучения в пределах Dя = 3...5 см. Тогда размер одной элементарной ячейки магнитного поля D = 2,41-Dя, = 2,41(3...5) может быть определен в пределах D = 7...12 см.

Следовательно, на длине конечности L-1 м должно быть сформировано от 8 до 14 ячеек, а по длине всего тела человека 16...30 ячеек. Таким образом, порядок размерностей ячеек и процессов определился в пределах 8...30, т.е. значения m и n (рис.1) также должны находиться в пределах 8...30. При этом необходимо учесть, что определяющим фактором в расчете размеров явилась физическая реализуемость источников магнитного поля на современном уровне развития техники.

Анализ метрики поля

Выше проанализирована пространственная метрика ячеистой структуры динамического магнитного поля, создаваемого вокруг человека. Причем диаметр Dя одной ячейки магнитного поля должен находиться в пределах 7...12 см.

На следующем этапе анализа следует выяснить необходимое количество ячеек для формирования замкнутого магнитного поля вокруг человека. Обозначим общую площадь поверхности тела человека Sn и рассчитаем необходимое число ячеек в соответствии с выражением:

(3)

Если принять общую площадь поверхности тела человека в среднем равную Sn = 40000 см2 (с запасом на комфортное расположение пациента), то общее число ячеек определится в пределах N = 400...1000.

Обратимся теперь к вопросу формирования конфигурации объема магнитного поля вокруг человека. Очевидно, что пространственная структура макрополя, окружающая все тело пациента в целом, имеет немаловажное значение для достижения высокоэффективного лечения. Можно предложить множество моделей конфигурации ячеистой структуры излучателей:

· в форме плоскости, на которой располагается человек;

· в форме двух плоскостей, между которыми располагается человек;

Просмотров