Complex equations without brackets. How to solve an equation with brackets

One of the most important skills when admission to 5th grade is the ability to solve simple equations. Since 5th grade is not yet so far from elementary school, there are not so many types of equations that a student can solve. We will introduce you to all the basic types of equations that you need to be able to solve if you want enter a physics and mathematics school.

Type 1: "bulbous"
These are equations that you are almost likely to encounter when admission to any school or a 5th grade club as a separate task. They are easy to distinguish from others: in them the variable is present only once. For example, or.
They are solved very simply: you just need to “get” to the unknown, gradually “removing” everything unnecessary that surrounds it - as if peeling an onion - hence the name. To solve it, just remember a few rules from the second class. Let's list them all:

Addition

  1. term1 + term2 = sum
  2. term1 = sum - term2
  3. term2 = sum - term1

Subtraction

  1. minuend - subtrahend = difference
  2. minuend = subtrahend + difference
  3. subtrahend = minuend - difference

Multiplication

  1. factor1 * factor2 = product
  2. factor1 = product: factor2
  3. factor2 = product: factor1

Division

  1. dividend: divisor = quotient
  2. dividend = divisor * quotient
  3. divisor = dividend: quotient

Let's look at an example of how to apply these rules.

Note that we are dividing on and we receive . In this situation, we know the divisor and the quotient. To find the dividend, you need to multiply the divisor by the quotient:

We have become a little closer to ourselves. Now we see that is added and it turns out . This means that to find one of the terms, you need to subtract the known term from the sum:

And another “layer” has been removed from the unknown! Now we see a situation with a known value of the product () and one known multiplier ().

Now the situation is “minuend - subtrahend = difference”

And the last step is the known product () and one of the factors ()

Type 2: equations with brackets
Equations of this type are most often found in problems - 90% of all problems for admission to 5th grade. Unlike "onion equations" the variable here can appear several times, so it is impossible to solve it using the methods from the previous paragraph. Typical equations: or
The main difficulty is opening the brackets correctly. After you have managed to do this correctly, you should reduce similar terms (numbers to numbers, variables to variables), and after that we get the simplest "onion equation" which we can solve. But first things first.

Expanding parentheses. We will give several rules that should be used in this case. But, as practice shows, the student begins to open the brackets correctly only after 70-80 completed problems. The basic rule is this: any factor outside the brackets must be multiplied by each term inside the brackets. And the minus sign in front of the bracket changes the sign of all the expressions inside. So, the basic rules of disclosure:










Bringing similar. Here everything is much easier: you need, by transferring the terms through the equal sign, to ensure that on one side there are only terms with the unknown, and on the other - only numbers. The basic rule is this: each term transferred through changes its sign - if it was with, it will become with, and vice versa. After a successful transfer, it is necessary to count the total number of unknowns, the total number on the other side of the equality than the variables, and solve a simple "onion equation".

In this video we will analyze a whole set of linear equations that are solved using the same algorithm - that’s why they are called the simplest.

First, let's define: what is a linear equation and which one is called the simplest?

A linear equation is one in which there is only one variable, and only to the first degree.

The simplest equation means the construction:

All other linear equations are reduced to the simplest using the algorithm:

  1. Expand parentheses, if any;
  2. Move terms containing a variable to one side of the equal sign, and terms without a variable to the other;
  3. Give similar terms to the left and right of the equal sign;
  4. Divide the resulting equation by the coefficient of the variable $x$.

Of course, this algorithm does not always help. The fact is that sometimes after all these machinations the coefficient of the variable $x$ turns out to be equal to zero. In this case, two options are possible:

  1. The equation has no solutions at all. For example, when something like $0\cdot x=8$ turns out, i.e. on the left is zero, and on the right is a number other than zero. In the video below we will look at several reasons why this situation is possible.
  2. The solution is all numbers. The only case when this is possible is when the equation has been reduced to the construction $0\cdot x=0$. It is quite logical that no matter what $x$ we substitute, it will still turn out “zero is equal to zero”, i.e. correct numerical equality.

Now let's see how all this works using real-life examples.

Examples of solving equations

Today we are dealing with linear equations, and only the simplest ones. In general, a linear equation means any equality that contains exactly one variable, and it goes only to the first degree.

Such constructions are solved in approximately the same way:

  1. First of all, you need to expand the parentheses, if there are any (as in our last example);
  2. Then combine similar
  3. Finally, isolate the variable, i.e. move everything connected with the variable—the terms in which it is contained—to one side, and move everything that remains without it to the other side.

Then, as a rule, you need to give similar ones on each side of the resulting equality, and after that all that remains is to divide by the coefficient of “x”, and we will get the final answer.

In theory, this looks nice and simple, but in practice, even experienced high school students can make offensive mistakes in fairly simple linear equations. Typically, errors are made either when opening brackets or when calculating the “pluses” and “minuses”.

In addition, it happens that a linear equation has no solutions at all, or that the solution is the entire number line, i.e. any number. We will look at these subtleties in today's lesson. But we will start, as you already understood, with the simplest tasks.

Scheme for solving simple linear equations

First, let me once again write the entire scheme for solving the simplest linear equations:

  1. Expand the brackets, if any.
  2. We isolate the variables, i.e. We move everything that contains “X’s” to one side, and everything without “X’s” to the other.
  3. We present similar terms.
  4. We divide everything by the coefficient of “x”.

Of course, this scheme does not always work; there are certain subtleties and tricks in it, and now we will get to know them.

Solving real examples of simple linear equations

Task No. 1

The first step requires us to open the brackets. But they are not in this example, so we skip this step. In the second step we need to isolate the variables. Please note: we are talking only about individual terms. Let's write it down:

We present similar terms on the left and right, but this has already been done here. Therefore, we move on to the fourth step: divide by the coefficient:

\[\frac(6x)(6)=-\frac(72)(6)\]

So we got the answer.

Task No. 2

We can see the parentheses in this problem, so let's expand them:

Both on the left and on the right we see approximately the same design, but let's act according to the algorithm, i.e. separating the variables:

Here are some similar ones:

At what roots does this work? Answer: for any. Therefore, we can write that $x$ is any number.

Task No. 3

The third linear equation is more interesting:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

There are several brackets here, but they are not multiplied by anything, they are simply preceded by different signs. Let's break them down:

We perform the second step already known to us:

\[-x+x+2x=15-6-12+3\]

Let's do the math:

We carry out the last step - divide everything by the coefficient of “x”:

\[\frac(2x)(x)=\frac(0)(2)\]

Things to Remember When Solving Linear Equations

If we ignore too simple tasks, I would like to say the following:

  • As I said above, not every linear equation has a solution - sometimes there are simply no roots;
  • Even if there are roots, there may be zero among them - there is nothing wrong with that.

Zero is the same number as the others; you shouldn’t discriminate against it in any way or assume that if you get zero, then you did something wrong.

Another feature is related to the opening of brackets. Please note: when there is a “minus” in front of them, we remove it, but in parentheses we change the signs to opposite. And then we can open it using standard algorithms: we will get what we saw in the calculations above.

Understanding this simple fact will help you avoid making stupid and hurtful mistakes in high school, when doing such things is taken for granted.

Solving complex linear equations

Let's move on to more complex equations. Now the constructions will become more complex and when performing various transformations a quadratic function will appear. However, we should not be afraid of this, because if, according to the author’s plan, we are solving a linear equation, then during the transformation process all monomials containing a quadratic function will certainly cancel.

Example No. 1

Obviously, the first step is to open the brackets. Let's do this very carefully:

Now let's take a look at privacy:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Here are some similar ones:

Obviously, this equation has no solutions, so we’ll write this in the answer:

\[\varnothing\]

or there are no roots.

Example No. 2

We perform the same actions. First step:

Let's move everything with a variable to the left, and without it - to the right:

Here are some similar ones:

Obviously, this linear equation has no solution, so we’ll write it this way:

\[\varnothing\],

or there are no roots.

Nuances of the solution

Both equations are completely solved. Using these two expressions as an example, we were once again convinced that even in the simplest linear equations, everything may not be so simple: there can be either one, or none, or infinitely many roots. In our case, we considered two equations, both simply have no roots.

But I would like to draw your attention to another fact: how to work with parentheses and how to open them if there is a minus sign in front of them. Consider this expression:

Before opening, you need to multiply everything by “X”. Please note: multiplies each individual term. Inside there are two terms - respectively, two terms and multiplied.

And only after these seemingly elementary, but very important and dangerous transformations have been completed, can you open the bracket from the point of view of the fact that there is a minus sign after it. Yes, yes: only now, when the transformations are completed, we remember that there is a minus sign in front of the brackets, which means that everything below simply changes signs. At the same time, the brackets themselves disappear and, most importantly, the front “minus” also disappears.

We do the same with the second equation:

It is not by chance that I pay attention to these small, seemingly insignificant facts. Because solving equations is always a sequence of elementary transformations, where the inability to clearly and competently perform simple actions leads to the fact that high school students come to me and again learn to solve such simple equations.

Of course, the day will come when you will hone these skills to the point of automaticity. You will no longer have to perform so many transformations each time; you will write everything on one line. But while you are just learning, you need to write each action separately.

Solving even more complex linear equations

What we are going to solve now can hardly be called the simplest task, but the meaning remains the same.

Task No. 1

\[\left(7x+1 \right)\left(3x-1 \right)-21((x)^(2))=3\]

Let's multiply all the elements in the first part:

Let's do some privacy:

Here are some similar ones:

Let's complete the last step:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Here is our final answer. And, despite the fact that in the process of solving we had coefficients with a quadratic function, they canceled each other out, which makes the equation linear and not quadratic.

Task No. 2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Let's carefully perform the first step: multiply each element from the first bracket by each element from the second. There should be a total of four new terms after the transformations:

Now let’s carefully perform the multiplication in each term:

Let’s move the terms with “X” to the left, and those without - to the right:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Here are similar terms:

Once again we have received the final answer.

Nuances of the solution

The most important note about these two equations is the following: as soon as we begin to multiply brackets that contain more than one term, this is done according to the following rule: we take the first term from the first and multiply with each element from the second; then we take the second element from the first and similarly multiply with each element from the second. As a result, we will have four terms.

About the algebraic sum

With this last example, I would like to remind students what an algebraic sum is. In classical mathematics, by $1-7$ we mean a simple construction: subtract seven from one. In algebra, we mean the following by this: to the number “one” we add another number, namely “minus seven”. This is how an algebraic sum differs from an ordinary arithmetic sum.

As soon as, when performing all the transformations, each addition and multiplication, you begin to see constructions similar to those described above, you simply will not have any problems in algebra when working with polynomials and equations.

Finally, let's look at a couple more examples that will be even more complex than the ones we just looked at, and to solve them we will have to slightly expand our standard algorithm.

Solving equations with fractions

To solve such tasks, we will have to add one more step to our algorithm. But first, let me remind you of our algorithm:

  1. Open the brackets.
  2. Separate variables.
  3. Bring similar ones.
  4. Divide by the ratio.

Alas, this wonderful algorithm, for all its effectiveness, turns out to be not entirely appropriate when we have fractions in front of us. And in what we will see below, we have a fraction on both the left and the right in both equations.

How to work in this case? Yes, it's very simple! To do this, you need to add one more step to the algorithm, which can be done both before and after the first action, namely, getting rid of fractions. So the algorithm will be as follows:

  1. Get rid of fractions.
  2. Open the brackets.
  3. Separate variables.
  4. Bring similar ones.
  5. Divide by the ratio.

What does it mean to “get rid of fractions”? And why can this be done both after and before the first standard step? In fact, in our case, all fractions are numerical in their denominator, i.e. Everywhere the denominator is just a number. Therefore, if we multiply both sides of the equation by this number, we will get rid of fractions.

Example No. 1

\[\frac(\left(2x+1 \right)\left(2x-3 \right))(4)=((x)^(2))-1\]

Let's get rid of the fractions in this equation:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot 4\]

Please note: everything is multiplied by “four” once, i.e. just because you have two parentheses doesn't mean you have to multiply each one by "four." Let's write down:

\[\left(2x+1 \right)\left(2x-3 \right)=\left(((x)^(2))-1 \right)\cdot 4\]

Now let's expand:

We seclude the variable:

We perform the reduction of similar terms:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

We have received the final solution, let's move on to the second equation.

Example No. 2

\[\frac(\left(1-x \right)\left(1+5x \right))(5)+((x)^(2))=1\]

Here we perform all the same actions:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

The problem is solved.

That, in fact, is all I wanted to tell you today.

Key points

Key findings are:

  • Know the algorithm for solving linear equations.
  • Ability to open brackets.
  • Don't worry if you have quadratic functions somewhere; most likely, they will be reduced in the process of further transformations.
  • There are three types of roots in linear equations, even the simplest ones: one single root, the entire number line is a root, and no roots at all.

I hope this lesson will help you master a simple, but very important topic for further understanding of all mathematics. If something is not clear, go to the site and solve the examples presented there. Stay tuned, many more interesting things await you!

The main function of parentheses is to change the order of actions when calculating values. For example, in the numerical expression \(5·3+7\) the multiplication will be calculated first, and then the addition: \(5·3+7 =15+7=22\). But in the expression \(5·(3+7)\) the addition in brackets will be calculated first, and only then the multiplication: \(5·(3+7)=5·10=50\).


Example. Expand the bracket: \(-(4m+3)\).
Solution : \(-(4m+3)=-4m-3\).

Example. Open the bracket and give similar terms \(5-(3x+2)+(2+3x)\).
Solution : \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).


Example. Expand the brackets \(5(3-x)\).
Solution : In the bracket we have \(3\) and \(-x\), and before the bracket there is a five. This means that each member of the bracket is multiplied by \(5\) - I remind you that The multiplication sign between a number and a parenthesis is not written in mathematics to reduce the size of entries.


Example. Expand the brackets \(-2(-3x+5)\).
Solution : As in the previous example, the \(-3x\) and \(5\) in the parenthesis are multiplied by \(-2\).

Example. Simplify the expression: \(5(x+y)-2(x-y)\).
Solution : \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).


It remains to consider the last situation.

When multiplying a bracket by a bracket, each term of the first bracket is multiplied with each term of the second:

\((c+d)(a-b)=c·(a-b)+d·(a-b)=ca-cb+da-db\)

Example. Expand the brackets \((2-x)(3x-1)\).
Solution : We have a product of brackets and it can be expanded immediately using the formula above. But in order not to get confused, let's do everything step by step.
Step 1. Remove the first bracket - multiply each of its terms by the second bracket:

Step 2. Expand the products of the brackets and the factor as described above:
- First things first...

Then the second.

Step 3. Now we multiply and present similar terms:

It is not necessary to describe all the transformations in such detail; you can multiply them right away. But if you are just learning how to open parentheses, write in detail, there will be less chance of making mistakes.

Note to the entire section. In fact, you don't need to remember all four rules, you only need to remember one, this one: \(c(a-b)=ca-cb\) . Why? Because if you substitute one instead of c, you get the rule \((a-b)=a-b\) . And if we substitute minus one, we get the rule \(-(a-b)=-a+b\) . Well, if you substitute another bracket instead of c, you can get the last rule.

Parenthesis within a parenthesis

Sometimes in practice there are problems with brackets nested inside other brackets. Here is an example of such a task: simplify the expression \(7x+2(5-(3x+y))\).

To successfully solve such tasks, you need:
- carefully understand the nesting of brackets - which one is in which;
- open the brackets sequentially, starting, for example, with the innermost one.

It is important when opening one of the brackets don't touch the rest of the expression, just rewriting it as is.
Let's look at the task written above as an example.

Example. Open the brackets and give similar terms \(7x+2(5-(3x+y))\).
Solution:


Example. Open the brackets and give similar terms \(-(x+3(2x-1+(x-5)))\).
Solution :

\(-(x+3(2x-1\)\(+(x-5)\) \())\)

There is triple nesting of parentheses here. Let's start with the innermost one (highlighted in green). There is a plus in front of the bracket, so it simply comes off.

\(-(x+3(2x-1\)\(+x-5\) \())\)

Now you need to open the second bracket, the intermediate one. But before that, we will simplify the expression of the ghost-like terms in this second bracket.

\(=-(x\)\(+3(3x-6)\) \()=\)

Now we open the second bracket (highlighted in blue). Before the bracket is a factor - so each term in the bracket is multiplied by it.

\(=-(x\)\(+9x-18\) \()=\)

And open the last bracket. There is a minus sign in front of the bracket, so all signs are reversed.

Expanding parentheses is a basic skill in mathematics. Without this skill, it is impossible to have a grade above a C in 8th and 9th grade. Therefore, I recommend that you understand this topic well.

Have you been looking for how to solve an equation with brackets? . A detailed solution with description and explanation will help you understand even the most complex problem, and how to solve equations in brackets is no exception. We will help you prepare for homework, tests, olympiads, as well as for entering a university. And no matter what example, no matter what math query you enter, we already have a solution. For example, “how to solve an equation with brackets.”

The use of various mathematical problems, calculators, equations and functions is widespread in our lives. They are used in many calculations, construction of structures and even sports. Man has used mathematics since ancient times and since then their use has only increased. However, now science does not stand still and we can enjoy the fruits of its activity, such as, for example, an online calculator that can solve problems such as how to solve an equation with brackets, how to solve equations in brackets, how to solve an equation with brackets, equation with brackets how to solve, equation with brackets how to solve. On this page you will find a calculator that will help you solve any question, including how to solve an equation with brackets. (for example, how to solve an equation with brackets).

Where can you solve any problem in mathematics, as well as how to solve an equation with brackets Online?

You can solve the problem of how to solve an equation with brackets on our website. The free online solver will allow you to solve an online problem of any complexity in a matter of seconds. All you need to do is simply enter your data into the solver. You can also watch the video instructions and learn how to correctly enter your task on our website. And if you still have questions, you can ask them in the chat at the bottom left of the calculator page.

An equation with one unknown, which, after opening the brackets and bringing similar terms, takes the form

ax + b = 0, where a and b are arbitrary numbers, is called linear equation with one unknown. Today we’ll figure out how to solve these linear equations.

For example, all equations:

2x + 3= 7 – 0.5x; 0.3x = 0; x/2 + 3 = 1/2 (x – 2) - linear.

The value of the unknown that turns the equation into a true equality is called decision or root of the equation .

For example, if in the equation 3x + 7 = 13 instead of the unknown x we ​​substitute the number 2, we obtain the correct equality 3 2 +7 = 13. This means that the value x = 2 is the solution or root of the equation.

And the value x = 3 does not turn the equation 3x + 7 = 13 into a true equality, since 3 2 +7 ≠ 13. This means that the value x = 3 is not a solution or a root of the equation.

Solving any linear equations reduces to solving equations of the form

ax + b = 0.

Let's move the free term from the left side of the equation to the right, changing the sign in front of b to the opposite, we get

If a ≠ 0, then x = ‒ b/a .

Example 1. Solve the equation 3x + 2 =11.

Let's move 2 from the left side of the equation to the right, changing the sign in front of 2 to the opposite, we get
3x = 11 – 2.

Let's do the subtraction, then
3x = 9.

To find x, you need to divide the product by a known factor, that is
x = 9:3.

This means that the value x = 3 is the solution or root of the equation.

Answer: x = 3.

If a = 0 and b = 0, then we get the equation 0x = 0. This equation has infinitely many solutions, since when we multiply any number by 0 we get 0, but b is also equal to 0. The solution to this equation is any number.

Example 2. Solve the equation 5(x – 3) + 2 = 3 (x – 4) + 2x ‒ 1.

Let's expand the brackets:
5x – 15 + 2 = 3x – 12 + 2x ‒ 1.


5x – 3x ‒ 2x = – 12 ‒ 1 + 15 ‒ 2.

Here are some similar terms:
0x = 0.

Answer: x - any number.

If a = 0 and b ≠ 0, then we get the equation 0x = - b. This equation has no solutions, since when we multiply any number by 0 we get 0, but b ≠ 0.

Example 3. Solve the equation x + 8 = x + 5.

Let’s group terms containing unknowns on the left side, and free terms on the right side:
x – x = 5 – 8.

Here are some similar terms:
0х = ‒ 3.

Answer: no solutions.

On Figure 1 shows a diagram for solving a linear equation

Let's draw up a general scheme for solving equations with one variable. Let's consider the solution to Example 4.

Example 4. Suppose we need to solve the equation

1) Multiply all terms of the equation by the least common multiple of the denominators, equal to 12.

2) After reduction we get
4 (x – 4) + 3 2 (x + 1) ‒ 12 = 6 5 (x – 3) + 24x – 2 (11x + 43)

3) To separate terms containing unknown and free terms, open the brackets:
4x – 16 + 6x + 6 – 12 = 30x – 90 + 24x – 22x – 86.

4) Let us group in one part the terms containing unknowns, and in the other - free terms:
4x + 6x – 30x – 24x + 22x = ‒ 90 – 86 + 16 – 6 + 12.

5) Let us present similar terms:
- 22x = - 154.

6) Divide by – 22, We get
x = 7.

As you can see, the root of the equation is seven.

Generally such equations can be solved using the following scheme:

a) bring the equation to its integer form;

b) open the brackets;

c) group the terms containing the unknown in one part of the equation, and the free terms in the other;

d) bring similar members;

e) solve an equation of the form aх = b, which was obtained after bringing similar terms.

However, this scheme is not necessary for every equation. When solving many simpler equations, you have to start not from the first, but from the second ( Example. 2), third ( Example. 13) and even from the fifth stage, as in example 5.

Example 5. Solve the equation 2x = 1/4.

Find the unknown x = 1/4: 2,
x = 1/8
.

Let's look at solving some linear equations found in the main state exam.

Example 6. Solve the equation 2 (x + 3) = 5 – 6x.

2x + 6 = 5 – 6x

2x + 6x = 5 – 6

Answer: - 0.125

Example 7. Solve the equation – 6 (5 – 3x) = 8x – 7.

– 30 + 18x = 8x – 7

18x – 8x = – 7 +30

Answer: 2.3

Example 8. Solve the equation

3(3x – 4) = 4 7x + 24

9x – 12 = 28x + 24

9x – 28x = 24 + 12

Example 9. Find f(6) if f (x + 2) = 3 7's

Solution

Since we need to find f(6), and we know f (x + 2),
then x + 2 = 6.

We solve the linear equation x + 2 = 6,
we get x = 6 – 2, x = 4.

If x = 4 then
f(6) = 3 7-4 = 3 3 = 27

Answer: 27.

If you still have questions or want to understand solving equations more thoroughly, sign up for my lessons in the SCHEDULE. I will be glad to help you!

TutorOnline also recommends watching a new video lesson from our tutor Olga Alexandrovna, which will help you understand both linear equations and others.

website, when copying material in full or in part, a link to the source is required.

Views