Poplar military equipment. Mobile "Topol" is not a weapon at all

Cosmodrome "Plesetsk" | Intercontinental ballistic missile RS-12M ("Topol")

Intercontinental ballistic missile RS-12M ("Topol")

The RS-12M intercontinental three-stage ballistic missile (NATO code name - “Sickle”, SS-25 “Sickle”) with a monoblock warhead is part of the first mobile ground-based missile system put on combat duty in the USSR/RF.

Developed by a cooperation of enterprises, the head of which was the design bureau headed by A.D. Nadiradze (later - B.N. Lagutin). The complex is based on the experience of the Moscow Institute of Thermal Engineering in the creation in the 70s of mobile ground complexes with RS-14 (“Temp-2S”) and RSD-10 (“Pioneer”) missiles, the testing and deployment of which were prohibited by international treaties.

The RS-12M missile began development in 1980 as a modernization of the RS-12 (RT-2P) intercontinental ballistic missile and taking into account the severe restrictions imposed by the SALT II Treaty. This led to a slight deterioration by 10...20% in the energy and mass perfection of the rocket compared to similar indicators American missiles“Minuteman 2, -3.”

Flight design tests of the rocket took place at the 53rd NIIP MO (now the 1st GIK MO) from September 29, 1981 to December 23, 1987. More than 70 launches of this rocket were carried out.

The first stage of the rocket consists of a sustainer solid propellant rocket engine and a tail section. The mass of the fully loaded stage is 27.8 tons. Its length is 8.1 m and diameter is 1.8 m. The stage's main solid propellant rocket engine has one fixed, centrally located nozzle. The tail section is cylindrical in shape, on the outer surface of which aerodynamic control surfaces and stabilizers are located.

The rocket flight control in the first stage operation area is carried out using rotary gas-jet and aerodynamic rudders.

The second stage structurally consists of a conical-shaped connecting compartment and a sustainer solid propellant rocket engine. The case diameter is 1.55 m.

The third stage includes connecting and transition sections of a conical shape and a sustainer solid propellant rocket engine. Case diameter - 1.34 m.

Head part The missile consists of one warhead and a compartment with a propulsion system and control system. Inertial type control system. It provides rocket flight control, routine maintenance on the rocket and launcher, pre-launch preparation and launch of the rocket, as well as solving other problems.

During operation, the RS-12M missile is located in a transport and launch container located on a mobile launcher. The length of the container is 22.3 m and the diameter is 2.0 m.

The launcher is mounted on the basis of a seven-axle chassis of a MAZ vehicle and is equipped with units and systems that ensure transportation, maintenance of combat readiness at the established level, preparation and launch of the rocket.

A rocket launch is possible both when it is located launcher in a stationary shelter, and from unequipped positions, if the terrain allows it. To launch a rocket, the launcher is hung on jacks and leveled. The rocket is launched after the container is lifted into vertical position using a powder pressure accumulator placed in a transport and launch container (“mortar launch”).

Transportable rocket space complexes “Start-1” and “Start” were created on the basis of the RS-12M rocket.


Main performance characteristics of the RS-12M Topol ICBM
Maximum range firing, km 10500
Number of steps 3
Launch weight, tons 45.1
Throwing weight, tons 1
Rocket length, m 21.5
Maximum diameter, m 1.8
Head type monoblock, nuclear
Nuclear warhead power, Mt 0.55
Firing accuracy (maximum deviation), km 0.9
Fuel solid, mixed
Control system type autonomous, inertial based on BTsVK
Controls rotary gas-jet and aerodynamic rudders

Complex RT-2PM2 "Topol-M"(code RS-12M2, according to NATO classification - SS-27 Sickle "Sickle") - Russian missile system strategic purpose with an intercontinental ballistic missile, developed in the late 1980s - early 1990s on the basis of the RT-2PM Topol complex. The first intercontinental ballistic missile developed in Russia after the collapse of the USSR. Adopted into service in 1997. The lead developer of the missile system is the Moscow Institute of Thermal Engineering (MIT).

Rocket of the Topol-M complex is solid fuel, three-stage. Maximum range - 11,000 km. Carries one thermonuclear warhead with a power of 550 kt. The missile is based both in silo launchers (silos) and on mobile launchers. The silo-based version was put into service in 2000.

Designed to carry out missions of attacking enemy territory in the face of counteraction from existing and promising systems PRO, with multiple nuclear impact in the positional area, when the positional area is blocked by high-altitude nuclear explosions. Used as part of the 15PO65 complex mine-based and 15P165 mobile based.

Stationary complex "Topol-M" includes 10 intercontinental ballistic missiles mounted in silo launchers, as well as command post.
Main characteristics of the Topol-M rocket

Number of steps 3
Length (with MS) 22.55 m
Length (without MS) 17.5 m
Diameter 1.81 m
Launch weight 46.5 t
Throwing weight 1.2 t
Type of fuel Solid mixed
Maximum range 11000 km
Head type Monobloc, nuclear, detachable
Number of warheads 1 + about 20 dummies
Charge power 550 Kt
Control system Autonomous, inertial based on BTsVK
Based method Mine and mobile

Mobile complex "Topol-M" is a single missile placed in a high-strength fiberglass transport and launch container (TPK), mounted on an eight-axle MZKT-79221 cross-country chassis and is structurally practically no different from the silo version. The weight of the launcher is 120 tons. Six pairs of eight wheels are swivel, providing a turning radius of 18 meters.

The ground pressure of the installation is half that of a conventional truck. Engine V-shaped 12-cylinder turbocharged diesel engine YaMZ-847 with a power of 800 hp. The depth of the ford is up to 1.1 meters.

When creating systems and units of the mobile Topol-M, a number of fundamentally new technologies were used technical solutions compared to the Topol complex. Thus, the partial suspension system makes it possible to deploy the Topol-M launcher even on soft soils. The maneuverability and maneuverability of the installation have been improved, which increases its survivability.

"Topol-M" is capable of launching from any point in the positional area, and also has improved means of camouflage, both against optical and other reconnaissance means (including by reducing the infrared component of the complex's unmasking field, as well as the use of special coatings that reduce radar signature).

Intercontinental missile consists of three stages with solid propellant propulsion engines. Aluminum is used as fuel, ammonium perchlorate acts as an oxidizing agent. The step bodies are made of composites. All three stages are equipped with a rotating nozzle to deflect the thrust vector (there are no lattice aerodynamic rudders).

Control system– inertial, based on the on-board central heating system and a gyro-stabilized platform. The complex of high-speed command gyroscopic devices has improved accuracy characteristics. The new BCVC has increased productivity and resistance to damaging factors nuclear explosion. Aiming is ensured through the implementation of autonomous determination of the azimuth of the control element installed on a gyro-stabilized platform using ground complex command instruments located on the TPK. Increased combat readiness, accuracy and continuous operation life of on-board equipment are ensured.

Launch method - mortar for both options. The rocket's sustaining solid-propellant engine allows it to gain speed much faster than previous types of rockets of a similar class created in Russia and the Soviet Union. This makes it much more difficult for missile defense systems to intercept it during the active phase of the flight.

The missile is equipped with a detachable warhead with one thermonuclear warhead with a power of 550 Kt TNT equivalent. The warhead is also equipped with a set of means to overcome missile defense. The complex of means for overcoming missile defense consists of passive and active decoys, as well as means of distorting the characteristics of the warhead. Several dozen auxiliary correction engines, instruments and control mechanisms allow the warhead to maneuver along the trajectory, making it difficult to intercept it at the final part of the trajectory.

False targets indistinguishable from warheads in all ranges of electromagnetic radiation (optical, laser, infrared, radar). False targets make it possible to simulate the characteristics of warheads according to almost all selection criteria in the extra-atmospheric, transitional and significant part of the atmospheric section of the descending branch of the flight trajectory of missile warheads, and are resistant to damaging factors nuclear explosion and radiation from a super-powerful nuclear-pumped laser. For the first time, decoys have been designed that can withstand super-resolution radars.

In connection with the termination of the START-2 treaty, which prohibited the creation of multi-charge intercontinental ballistic missiles, the Moscow Institute of Thermal Engineering is working on equipping Topol-M with multiple independently targetable warheads. Perhaps the result of this work is the RS-24 Yars. Being tested mobile version of this complex, located on the chassis of an eight-axle tractor MZKT-79221.

The high resistance of the 15Zh65 missile to the effects of potential enemy missile defense systems is achieved due to:

  • Reducing the time and length of the active section through extremely rapid acceleration of the rocket. Acceleration time to final speed (over 7 km/s) is less than 3 minutes.
  • The missile’s ability to maneuver in the active section, complicating the enemy’s solution to the interception task, as well as to perform a program maneuver when passing through the cloud of a nuclear explosion
  • Protective coating of the housing new development, providing comprehensive protection from the damaging factors of a nuclear explosion and weapons based on new physical principles.
  • A complex for overcoming missile defense, including passive and active decoys and means of distorting the characteristics of the warhead. LCs are indistinguishable from warheads in all ranges of electromagnetic radiation (optical, laser, infrared, radar), they allow simulating the characteristics of warheads according to almost all selection criteria in the extra-atmospheric, transitional and significant part of the atmospheric section of the descending branch of the flight trajectory of missile warheads, up to altitudes 2 - 5 km; are resistant to the damaging factors of a nuclear explosion and radiation from a super-powerful nuclear-pumped laser, etc. For the first time, LCs have been designed that can withstand super-resolution radars. Means for distorting the characteristics of the warhead consist of a radio-absorbing (combined with heat-protective) coating of the warhead, active jammers, etc. The radar signature of the warhead is reduced by several orders of magnitude, the ESR is 0.0001 sq.m. Its detection range has been reduced to 100 - 200 km. The optical and IR visibility of the BB is extremely reduced due to the effective cooling of the BB surface in the trans-atmospheric section and the reduction in the luminosity of the BB's wake in the atmospheric section, achieved incl. due to the injection of special liquid products into the trace area that reduce the intensity of radiation. As a result of the measures taken, it is possible to overcome the monoblock warhead of a promising multi-echelon missile defense system with space-based elements with a probability of 0.93 - 0.94. The high- and sub-atmospheric missile defense section is overcome with a probability of 0.99, the atmospheric - with a probability of 0.93 - 0.95.

The 15Zh65 rocket is equipped with a thermonuclear monoblock warhead with a power of 0.55 MGt. Tests of ICBMs with MIRVs (from 3 to 6 multiple warheads with a capacity of 150 kt.) have been carried out. In the future, it is planned to equip the missile with a maneuvering warhead (tests of which were also successfully carried out in 2005 and continue), and therefore the possibility of intercepting warheads, according to Russian specialists will be practically reduced to zero.

The probable circular deviation is no more than 200 m, which allows the half-megaton power warhead to confidently hit highly protected point targets (in particular, command posts and silos). Due to the limited throw weight, which limits the power of nuclear warheads, the Topol-M missile, unlike the 15A18 missile "Voevoda"(the power of a monoblock warhead was 20-25 MGt) has limitations on the implementation of a destructive effect on a large area target.

The mobile-based 15P165 complex has unique initial survivability characteristics and is capable of operating covertly and autonomously for a long period of time. The patrol area of ​​the complex is 250,000 sq. km.

Rocket "Topol M" unified with the rocket "Mace" sea-based, created to arm the Project 955 SSBN. The Bulava’s competitor is the R-29RMU2 liquid-fueled ICBM “ Sineva" It is significantly superior to the Bulava (like all other ICBMs) in terms of energy and mass perfection, but is inferior in terms of what is important for Russian missiles sea-based criterion - survival in the active site due to lower acceleration speed and greater vulnerability from laser weapons characteristic of liquid rockets compared to solid propellant ones. However, the Bulava rocket, with a launch weight of about 37 tons, is significantly inferior in striking power to existing heavier solid-fuel rockets, including the Trident-2 rocket with a launch weight of 59 tons. (Bulava warhead - 6x150 kt, Trident-2 (theoretically) - 8x475 kt). Marine component equipment project nuclear forces Russia's SSBNs with light ballistic missiles "Bulava" are criticized by experts who point to the need to arm domestic SSBNs with high-tech solid-fuel SLBMs R-39UTTH, the testing of which was curtailed in the 90s. and which, if put into service, would have no analogues in the world among SLBMs in terms of striking power and flight performance.

Transportation of the rocket and loading into the silo

Transportation and loading into the silo of the 5th generation intercontinental ballistic missile system RT-2PM2 "Topol-M". Location: 60th Taman Order of the October Revolution Red Banner Missile Division.

Development of strategic mobile complex"Topol" 15Zh58 (RS-12M), a three-stage intercontinental ballistic missile suitable for placement on a self-propelled vehicle chassis (based on the RT-2P solid-fuel ICBM), was launched at the Moscow Institute of Thermal Engineering under the leadership of Alexander Nadiradze in 1975. The government decree on the development of the complex was issued on July 19, 1977. After the death of A. Nadiradze, work was continued under the leadership of Boris Lagutin. The mobile Topol was supposed to be a response to increasing the accuracy of American ICBMs. It was necessary to create a complex with increased survivability, achieved not by building reliable shelters, but by creating vague ideas among the enemy about the location of the missile.

By the end of autumn 1983, a pilot series of new missiles, designated RT-2PM, was built. On December 23, 1983, flight development tests began at the Plesetsk training ground. During the entire period of their implementation, only one launch was unsuccessful. In general, the rocket showed high reliability. Combat units of the entire DBK were also tested there. In December 1984, the main series of tests was completed. However, there was a delay in the development of some elements of the complex that are not directly related to the rocket. The entire test program was successfully completed in December 1988.

The decision to begin mass production of the complexes was made in December 1984. Serial production began in 1985.

In 1984, the construction of stationary structures and the equipment of combat patrol routes for Topol mobile missile systems began. The construction objects were located in the position areas of the RT-2P and UR-100 intercontinental ballistic missiles being removed from duty and located in the OS silos. Later, the arrangement of position areas of the complexes removed from service under the INF Treaty began medium range"Pioneer".

In order to gain experience in operating the new complex in military units, in 1985 it was decided to deploy the first missile regiment in Yoshkar-Ola, without waiting for the full completion of the joint testing program. On July 23, 1985, the first regiment of mobile Topols took up combat duty near Yoshkar-Ola at the site of the deployment of RT-2P missiles. Later, the Topols entered service with the division stationed near Teykovo, which was previously armed with the UR-100 (8K84) ICBM.

On April 28, 1987, a missile regiment armed with Topol complexes with a Barrier mobile command post took up combat duty near Nizhny Tagil. PKP "Barrier" has a multiple protected redundant radio command system. The mobile launcher of the Barrier PKP carries a combat control missile. After the missile is launched, its transmitter gives the command to launch the ICBM.

On December 1, 1988, the new missile system was officially adopted by the USSR Strategic Missile Forces. In the same year, the full-scale deployment of missile regiments with the Topol complex began and the simultaneous removal of obsolete ICBMs from combat duty. On May 27, 1988, the first regiment of the Topol ICBM with an improved Granit PKP and an automated control system began combat duty near Irkutsk.

By mid-1991, 288 missiles of this type were deployed. In 1999, the Strategic Missile Forces were armed with 360 launchers of the Topol missile systems. They were on duty in ten position areas. Four to five regiments are based in each district. Each regiment is armed with nine autonomous launchers and a mobile command post.

The Topol missile divisions were deployed near the cities of Barnaul, Verkhnyaya Salda (Nizhny Tagil), Vypolzovo (Bologoe), Yoshkar-Ola, Teykovo, Yurya, Novosibirsk, Kansk, Irkutsk, as well as near the village of Drovyanaya in the Chita region. Nine regiments (81 launchers) were deployed in missile divisions on the territory of Belarus - near the cities of Lida, Mozyr and Postavy. After the collapse of the USSR, some of the Topols remained outside Russia, on the territory of Belarus. On August 13, 1993, the withdrawal of the Topol Strategic Missile Forces group from Belarus began and was completed on November 27, 1996.

In the west, the complex received the designation SS-25 "Sickle".

Compound

The RT-2PM missile is designed according to a design with three sustainer and combat stages. To ensure high energy-mass perfection and increase the firing range, a new high-density fuel with a specific impulse increased by several units was used in all sustainer stages compared to the fillers of previously created engines, and the housings of the upper stages were for the first time made of continuous winding from organoplastic according to the “cocoon” pattern ". The most difficult technical problem It turned out that on the front bottom of the body of the upper stage of the thrust cut-off unit with eight reversible sockets and “windows” cut through by DUZs (DUZ - detonating extended charge) in an organoplastic power structure.

The first stage of the rocket consists of a sustainer solid propellant rocket engine and a tail section, on the outer surface of which aerodynamic rudders and stabilizers are located. The main engine has one fixed nozzle. The second stage structurally consists of a connecting compartment and a main solid propellant rocket engine. The third stage has almost the same design, but it additionally includes a transition compartment to which the head part is attached.

An autonomous, inertial control system was developed at NPO Automation and Instrumentation under the leadership of Vladimir Lapygin. The aiming system was developed under the leadership of the chief designer of the Kyiv Arsenal plant, Seraphim Parnyakov. The inertial control system has its own digital computer, which made it possible to achieve high shooting accuracy. According to domestic sources, the circular probable deviation (CPD) when firing at the maximum range is 400m, according to Western sources - 150-200m. The control system provides missile flight control, routine maintenance on the missile and launcher, pre-launch preparation and launch of the missile without turning the launcher. All pre-launch preparation and launch operations are fully automated.

"Topol" is equipped with a set of means to overcome missile defense. The rocket's flight is controlled by rotary gas-jet and lattice aerodynamic rudders. New nozzle devices for solid fuel engines have been created. To ensure secrecy, camouflage, decoy systems, and camouflage means have been developed. Like previous mobile complexes of the Moscow Institute of Thermal Engineering, Topol can be launched both from a combat patrol route and while parked in garage shelters with a retractable roof. To do this, the launcher is hung on jacks. Combat readiness from the moment the order was received until the missile was launched was brought to two minutes. Mobile and stationary command posts were developed for the new complexes. The mobile command post for combat control of the Topol ICBM is located on the basis of a four-axle MAZ-543M vehicle. To control the fire, mobile command posts "Barrier" and "Granit" were also used, equipped with a missile, with a transmitter instead of a combat load, which, after launching the missile, duplicated the start command for the launchers located in positional areas.

During operation, the missile is located in a transport and launch container installed on a mobile launcher. It is mounted on the basis of a seven-axle chassis of a MAZ heavy-duty vehicle. The rocket is launched from a vertical position using a powder pressure accumulator placed in a transport and launch container.

The launcher (see diagram) was developed at the Volgograd Central Design Bureau "Titan" under the leadership of Valerian Sobolev and Viktor Shurygin. The launcher is mounted on the chassis of a seven-axle tractor MAZ-7912 (later MAZ-7917 with a 14x12 wheel arrangement. This vehicle from the 80s is equipped with a 710 hp diesel engine) from the Minsk Automobile Plant with an engine from the Yaroslavl Motor Plant. Chief designer of the rocket carrier Vladimir Tsvyalev. Solid propellant engine charges were developed at the Lyubertsy NPO Soyuz under the leadership of Boris Zhukov (later the association was headed by Zinovy ​​Pak). Composite materials and the container were developed and manufactured at the Central Research Institute of Special Engineering under the leadership of Viktor Protasov. The steering hydraulic drives of the rocket and the hydraulic drives of the self-propelled launcher were developed at the Moscow Central Research Institute of Automation and Hydraulics. The nuclear warhead was created at the All-Union Research Institute of Experimental Physics under the leadership of chief designer Samvel Kocharyants.

Initially, the warranty period for the rocket's operation was set at 10 years. Later the warranty period was extended to 15 years. The mobile command post for combat control of the Topol ICBM was located on the chassis of a four-axle MAZ-543M vehicle. To control the fire, mobile command posts "Barrier" and "Granit" were also used, equipped with a missile, with a transmitter instead of a combat load, which, after launching the missile, duplicated the start command for the launchers located in positional areas.

Performance characteristics

Maximum firing range, km 10 000
Rocket length, m 21,5
Launch weight, t 45
Head mass, t 1
Weight of the loaded first stage of the rocket, t 27,8
Length of the first stage, m 8,1
Second stage length, m 4,6
Length of the third stage, m 3,9
Head length, m 2,1
Diameter of the first stage body, m 1,8
Diameter of the second stage body, m 1,55
Diameter of the third stage body, m 1,34
Diameter of transport and launch container, m 2
Area of ​​the complex's combat patrol area, km 2 125 000

Testing and operation

The Topol PGRK entered testing in February 1983. The first launch took place on February 8 at the Plesetsk test site. This and two subsequent launches were made from converted silos of stationary RT-2P missiles. One launch ended unsuccessfully.

Each year, one control launch of the Topol rocket is carried out from the Plesetsk test site. The high reliability of the complex is evidenced by the fact that during its testing and operation, about fifty control and test launches of missiles were carried out. All of them went without a hitch.

November 29, 2005 A combat training launch of the mobile-based RS-12M Topol ICBM was carried out from the Plesetsk cosmodrome in the direction of the Kura training ground in Kamchatka. A training missile warhead hit a simulated target at a training ground on the Kamchatka Peninsula with specified accuracy. The main purpose of the launch is to check the reliability of the equipment. The missile remained on combat duty for 20 years. This is the first time in the practice of not only domestic, but also global rocket science - a solid-fuel rocket that has been in operation for so many years has been successfully launched.

A conversion space launch vehicle "Start" was developed on the basis of the Topol ICBM. Launches of Start rockets are carried out from the Plesetsk and Svobodny cosmodromes.

Ballistic missiles have been and remain a reliable shield national security Russia. A shield, ready, if necessary, to turn into a sword.

R-36M "Satan"

Developer: Yuzhnoye Design Bureau
Length: 33.65 m
Diameter: 3 m
Starting weight: 208,300 kg
Flight range: 16000 km
Soviet strategic missile system of the third generation, with a heavy two-stage liquid-propelled, ampulized intercontinental ballistic missile 15A14 for placement in a silo launcher 15P714 of increased security type OS.

The Americans called the Soviet strategic missile system “Satan”. When first tested in 1973, the missile was the most powerful ballistic system ever developed. Not a single missile defense system was capable of resisting the SS-18, whose destruction radius was as much as 16 thousand meters. After the creation of the R-36M, Soviet Union could not worry about the “arms race”. However, in the 1980s, the "Satan" was modified, and in 1988 it was put into service Soviet army arrived a new version SS-18 - R-36M2 “Voevoda”, against which modern American missile defense systems cannot do anything.

RT-2PM2. "Topol M"


Length: 22.7 m
Diameter: 1.86 m
Starting weight: 47.1 t
Flight range: 11000 km

The RT-2PM2 rocket is designed as a three-stage rocket with a powerful mixed solid fuel power plant and fiberglass body. Testing of the rocket began in 1994. The first launch was carried out from a silo launcher at the Plesetsk cosmodrome on December 20, 1994. In 1997, after four successful launches Serial production of these missiles has begun. The act on the adoption of the Topol-M intercontinental ballistic missile into service by the Strategic Missile Forces of the Russian Federation was approved by the State Commission on April 28, 2000. As of the end of 2012, there were 60 silo-based and 18 mobile-based Topol-M missiles on combat duty. All silo-based missiles are on combat duty in the Taman Missile Division (Svetly, Saratov Region).

PC-24 "Yars"

Developer: MIT
Length: 23 m
Diameter: 2 m
Flight range: 11000 km
The first rocket launch took place in 2007. Unlike Topol-M, it has multiple warheads. In addition to warheads, Yars also carries a set of missile defense penetration capabilities, which makes it difficult for the enemy to detect and intercept it. This innovation makes the RS-24 the most successful combat missile in the context of global deployment American system PRO.

SRK UR-100N UTTH with 15A35 missile

Developer: Central Design Bureau of Mechanical Engineering
Length: 24.3 m
Diameter: 2.5 m
Starting weight: 105.6 t
Flight range: 10000 km
The third generation intercontinental ballistic liquid missile 15A30 (UR-100N) with a multiple independently targetable reentry vehicle (MIRV) was developed at the Central Design Bureau of Mechanical Engineering under the leadership of V.N. Chelomey. Flight design tests of the 15A30 ICBM were carried out at the Baikonur training ground (chairman of the state commission - Lieutenant General E.B. Volkov). The first launch of the 15A30 ICBM took place on April 9, 1973. According to official data, as of July 2009, the Strategic Missile Forces of the Russian Federation had 70 deployed 15A35 ICBMs: 1. 60th Missile Division (Tatishchevo), 41 UR-100N UTTH 2. 28th Guards Missile Division (Kozelsk), 29 UR-100N UTTH.

15Zh60 "Well done"

Developer: Yuzhnoye Design Bureau
Length: 22.6 m
Diameter: 2.4 m
Starting weight: 104.5 t
Flight range: 10000 km
RT-23 UTTH "Molodets" - strategic missile systems with solid fuel three-stage intercontinental ballistic missiles 15Zh61 and 15Zh60, mobile railway and stationary silo-based, respectively. It was a further development of the RT-23 complex. They were put into service in 1987. Aerodynamic rudders are located on the outer surface of the fairing, allowing the rocket to be controlled in roll during the operation of the first and second stages. After passing through the dense layers of the atmosphere, the fairing is discarded.

R-30 "Bulava"

Developer: MIT
Length: 11.5 m
Diameter: 2 m
Starting weight: 36.8 tons.
Flight range: 9300 km
Russian solid-fuel ballistic missile of the D-30 complex for deployment on submarines project 955. The first launch of the Bulava took place in 2005. Domestic authors often criticize the Bulava missile system under development for a fairly large share of unsuccessful tests. According to critics, the Bulava appeared due to Russia’s banal desire to save money: the country’s desire to reduce development costs by unifying the Bulava with land missiles made its production cheaper , than usual.

X-101/X-102

Developer: MKB "Raduga"
Length: 7.45 m
Diameter: 742 mm
Wingspan: 3 m
Starting weight: 2200-2400
Flight range: 5000-5500 km
Strategic cruise missile new generation. Its body is a low-wing aircraft, but has a flattened cross-section and side surfaces. Warhead missiles weighing 400 kg can hit 2 targets at once at a distance of 100 km from each other. The first target will be hit by ammunition descending by parachute, and the second directly when hit by a missile. At a flight range of 5,000 km, the circular probable deviation (CPD) is only 5-6 meters, and at a range of 10,000 km it does not exceed 10 m.

Rocket 15Zh58 (RT-2PM)

Rocket 15Zh58 made according to a scheme with three marching steps. To ensure high energy-mass perfection and increase the firing range, a new, more advanced mixed fuel of increased density, with a specific impulse increased by several units compared to the fillers of previously created engines, was used in all sustainer stages.

10.

11.

Installed on all three stages Solid propellant rocket engine with one fixed nozzle. On the outer surface of the tail section of the first stage there were folding rotary lattice aerodynamic rudders (4 pieces), used for flight control together with gas-jet rudders and 4 lattice aerodynamic stabilizers. The second stage structurally consists of a connecting compartment and a main stage Solid propellant rocket engine. The third stage has almost the same design, but it additionally includes a transition compartment to which the head part is attached.


12. First stage

13. Second stage

14. Third stage

15. Tail compartment


16. Combat stage of the RS-12M rocket

The bodies of the upper stages were made for the first time using the method of continuous winding of organoplastic according to the “cocoon” pattern. The third stage was equipped with a transition compartment for attaching the warhead. Controlling the firing range was a very complex technical task and was carried out by cutting off the third stage propulsion engine, using a thrust cut-off unit, with eight reversible bells and “windows” cut through DUZ ami ( DUZ- detonating elongated charge) in the organoplastic power structure of the housing. The thrust cut-off unit was located on the front bottom of the upper stage body.

An autonomous, inertial control system was developed at NPO Automation and Instrumentation under the leadership of Vladimir Lapygin. The aiming system was developed under the guidance of the chief designer of the Kyiv plant "Arsenal" Serafima Parnyakova. The inertial control system has its own digital computer, which made it possible to achieve high shooting accuracy. The control system provides missile flight control, routine maintenance on the missile and launcher, pre-launch preparation and launch of the missile. All pre-launch preparation and launch operations, as well as preparatory and regulatory workfully automated.

The warhead is monoblock, nuclear, weighing about 1 ton. The warhead includes a propulsion system and a control system that provides a circular probable deflection ( KVO) 400 m (this is what our sources say; in the West, the accuracy is estimated at 150-200 m). " Poplar» equipped with a set of means to overcome the missile defense of a potential enemy. The nuclear warhead was created at the All-Union Research Institute of Experimental Physics under the leadership of the chief designer Samvel Kocharyants. According to Western sources, the missile was tested at least once with four individually targetable warheads, but this option was not further developed.

The rocket's flight is controlled by rotary gas-jet and lattice aerodynamic rudders. New nozzle devices for solid fuel engines have been created. To ensure secrecy, camouflage, decoy systems, and camouflage means have been developed. Just like the previous mobile complexes of the Moscow Institute of Thermal Engineering. Rocket 15Zh58 produced in Votkinsk.

The entire life of the rocket 15Zh58 (RT-2PM) carried out in a sealed transport and launch container 22 m long and 2 m in diameter.

Initially, the warranty period for the rocket's operation was set at 10 years. Later the warranty period was extended to 15 years.

Launcher and equipment

During operation, the missile is located in a transport and launch container installed on a mobile launcher. It is mounted on the basis of a seven-axle chassis of a MAZ heavy-duty vehicle. The rocket is launched from a vertical position using a powder pressure accumulator ( PAD), placed in a transport and launch container ( TPK).

The launcher was developed at the Volgograd Central Design Bureau "Titan" under the direction of Valerian Soboleva And Victor Shurygin.

A seven-axle vehicle was used as the chassis of the mobile complex launcher. MAZ-7912 (15U128.1) , later - MAZ-7917 (15U168) wheel formula 14x12 (Barricades plant in Volgograd). This car from the Minsk Automobile Plant is equipped with a 710 hp diesel engine. Yaroslavl Motor Plant. Chief designer of the rocket ship Vladimir Tsvyalev. The vehicle contained a sealed transport and launch container with a diameter of 2 m and a length of 22 m. The mass of the launcher with the missile was about 100 tons. Despite this, the complex « Poplar"had good mobility and cross-country ability.

Solid propellant engine charges were developed at the Lyubertsy NPO Soyuz under the leadership of Boris Zhukova(later the association was headed by Zinovy Pack). Composite materials and container were developed and manufactured at the Central Research Institute of Special Mechanical Engineering under the leadership of Victor Protasova. The steering hydraulic drives of the rocket and the hydraulic drives of the self-propelled launcher were developed at the Moscow Central Research Institute of Automation and Hydraulics.


32. An example of the location of structures at the starting position

32.1. Starting position Novosibirsk-2

32.2. Starting position Novosibirsk-2

32.3. Starting position Novosibirsk-2

Some sources reported that the launch could have been carried out from any point on the patrol route, but according to more precise information: “ Upon receipt of the order to launch ASBU, calculation APU is obliged to occupy the nearest route point suitable for launch and deploy APU» .

In the field (i.e. on the field BSP And IBP shelves " Poplars"are on combat duty, as a rule, for 1.5 months in winter and the same amount in summer).

Start RS-12M could have been produced directly from a special unit 15U135 « Crown" in which " Poplars» are on combat duty on stationary BSP . For this purpose, the hangar roof is made retractable.

Initially the roof was retractable, and on the locking device, which did not allow cables with loads - concrete counterweights - at the end (like a weight on a chain on a walker) the fall was installed squibs.At the start command (in the mode cyclogram« Start"), a command was issued to activate the squibs, and then the loads pulled the cables with their weight and the roof moved apart.

In harsh winter conditions such a scheme proved to be negative (it was impossible to determine the exact mass of the counterweight due to snowfall; the average reading led to either jamming or falling off the guides; in addition, without shooting it is not possible to determine the condition of the squib). Therefore, the squibs were replaced with older and more reliable ones (compared to Pioneer electromechanical drives have been improved. [Ed.]

Combat readiness (time to prepare for launch) from the moment the order was received until the missile was launched was brought to two minutes.

To enable starting PU hung on jacks and leveled. These operations enter deployment mode. The container with the rocket is then raised to a vertical position. For this in the “Start” mode, the powder pressure accumulator is activated ( PAD), located on the very APU. It is needed in order for the hydraulic system to work for lifting the boom from TPK to the vertical. In other words, this is an ordinary gas generator. On the Pioneer, the boom was raised (i.e. the hydraulic pump engine was running) driven by travel motor (HD) chassis, which led to the need to have a system to maintain HD in a “hot state”, duplicate the starting system HD air cylinders, etc. But such a scheme somewhat reduced reliability.

Launch type - artillery: after installation TPK into a vertical position and shooting off its upper protective cap, the first one is triggered first PAD TPK– for extending the movable bottom TPK to “rest” against the ground for greater stability, and then a second PAD already pushes the rocket to a height of several meters, after which the first stage propulsion engine is launched.

Control APU carried out PKP « Zenith"(divisional link) and " Granite"(regimental unit).

A mobile command post of the regiment was developed for the Topol complex ( PKP RP). Aggregates PKP RP placed on the chassis MAZ-543. Compound PKP RP:

Unit 15В168- combat control vehicle

Unit 15В179– communication machine 1

Unit 15B75– communication machine 2

Each of these units was accompanied by a unit MOBD(combat support vehicle), also on a chassis MAZ-543. At first it was a unit 15В148, then (with 1989 d.) unit 15В231.

One MOBD included the functions of 4 units of the complex Pioneer: MDES, canteen, dormitory, MDSO). Those. had diesel units, a utility compartment, BPU.

APU RK « Poplar» were equipped with a modernized system RBU, which made it possible to receive launch commands using the “ Perimeter» across 3 ranges.

Views