Installation of beech. "Buk": history of creation and characteristics

"Buk" (according to the GRAU index - 9K37, according to the codification of the NATO and US Defense Ministry - SA-11 Gadfly (translated as Gadfly) and its modifications) is a self-propelled air defense system designed to combat maneuvering aerodynamic targets at medium and low altitudes (from 30 meters 14-18 kilometers) in conditions of intense radio countermeasures.

Technical characteristics of the Buk-M1 air defense system:

Damage zone, km:
- range
- height
- parameter
3,32..35
0,015..20-22
until 22
Probability of target hit
- fighter type
- helicopter type
- cruise missile type
0,8..0,95
0,3..0,6
0,4..0,6
Maximum target speed m/s 800
Reaction time, s: 22
SAM flight speed, m/s 850
Rocket mass, kg 685
Weight of warhead, kg 70
Channel by target 2
SAM channel 3
Expansion (collapse) time, min 5
Number of missiles on a combat vehicle 4

Since the late 70s, one of the main means of military air defense has been the Buk series anti-aircraft missile systems. To date, several modifications of this technology have been developed and adopted into service by the Russian Federation. They have been successfully used to this day and occupy a worthy place in Russia’s arsenal.

3RK9K37 "Buk"

The creation of new Buk anti-aircraft systems began after a resolution of the USSR Council of Ministers of January 1972. The resolution identified the companies involved in the project, as well as the main requirements for it. The first technical specification stated that the new air defense system was supposed to replace the existing 2K12 “Cube” complex in service. In addition, it is necessary to create a missile that could be used both in the Buk kit and in the M-22 Uragan naval anti-aircraft system.

The new, more advanced anti-aircraft complex was intended to improve the equipment of military air defense, which could not but affect the requirements for its development. The specialists were required to mount all components of the complex on a self-propelled chassis, as well as ensure the ability to work together with tanks and other armored vehicles in the same combat formations. The complex must hit aerodynamic air targets moving at speeds of up to 800 meters per second at medium and low altitudes at ranges of up to 30 km. In addition, it was necessary to ensure the ability to hit a target using electronic countermeasures and maneuvering with an overload of up to 12 units. In the future, the developers planned to “teach” the complex to resist operational-tactical ballistic missiles.

The main developer of the 3RK9K37 Buk air defense system is the Research Institute of Instrumentation. In addition, many other companies were involved in the project, including the Start Machine-Building Design Bureau and the NPO Fazotron of the Ministry of Radio Industry.

  • The chief designer of the anti-aircraft complex is A.A. Rastov.
  • G.N. Valaev is the head of development of the complex’s command post. Later his position was taken by V.I. Sokiran.
  • V.V. Matyashev was responsible for the development of a self-propelled firing system.
  • I.G. Hakobyan - led the process of creating a semi-active homing head.
  • Employees of the Research Institute of Measuring Devices, headed by A.P., were involved in the development of the detection and target designation station. Petoshko (after some time he was replaced by Yu.P. Shchetkov).

Work on the development of the 9K37 complex was going to be completed by mid-1975. But in the spring of 1974, the developers decided to divide all types of work into 2 separate areas. The development was to take place in two stages. First of all, it was necessary to bring the 3M38 missile, as well as a self-propelled firing system, to mass production. Moreover, the latter was supposed to use the existing 9M9M3 missiles of the Kub-M3 system and is being built using components of the existing system.

According to forecasts, the complex will begin testing in the fall of 1974, and the creation of a full-fledged 3RK 9K37 using new components will continue according to a pre-planned schedule. This approach to the development of new anti-aircraft systems should ensure the earliest possible start of deliveries and production of new equipment that would significantly increase the combat potential of the ground forces.

The composition of 3RK 9K37 included several main elements. To monitor the air situation, it was planned to use the 9S18 “Dome” detection and target designation station, and to launch missiles it was planned to use the 9A39 launcher-loader and 9A310 self-propelled firing system. Coordination of actions should be carried out using the 9S470 command post. The means of hitting targets is the 9M38 anti-aircraft guided missile.

SOC 9S18 "Dome" is a self-propelled vehicle on a tracked chassis, equipped with a three-dimensional coherent-pulse radar, which is designed to monitor the situation in the air and transmit information about targets to the command post. On the surface of the base chassis there was a rotating antenna with an electric drive. The maximum target detection range is 115-120 km. In a situation with low-flying targets, this figure was significantly reduced. For example, a flying plane at an altitude of 30 meters was detected by the complex only from 45 kilometers away. The SOC equipment allowed automatic adjustment of the operating frequency in order to maintain operability when active interference was used by the enemy.

The main task of the “Kupil” station is to search for targets and transmit information to the command post. With a review period of 4.5 seconds, 75 marks were transmitted. The 9S470 command post was built on the basis of a self-propelled chassis, which is equipped with all the necessary equipment for processing data and issuing targets to launchers. The command post crew is 6 people. For this purpose, the command post was equipped with communication and data processing equipment. The equipment of the command post made it possible to process messages about 46 targets during 1 period of the SOC review. In this case, targets could be located at altitudes of up to 20 km and ranges of up to 100 km. Data on 6 targets was issued to the firing installations.

The main means of attacking enemy aircraft was to be the 9A310 fire self-propelled gun. It was a subsequent development of the SOU 9A38 of the Buk-1 complex. The tracked self-propelled chassis housed a rotating launcher with 4 guides for missiles, as well as a set of all the necessary electronic equipment. A tracking radar was installed in front of the launcher, which was also used for missile guidance.

To transport the loading of the self-propelled gun and additional ammunition, the Buk air defense system included a 9A39 launcher-loader. Such a vehicle on a tracked chassis was used to transport 8 missiles, as well as reload the SOU 9A310 launcher. The missiles were transported on 4 fixed cradle and a special type of launcher. Depending on the situation, the crew of the vehicle could launch it independently or reload the missiles from the launcher to the launcher. But due to the lack of its own tracking radar, it was impossible to do without external target designation. A special crane was responsible for reloading the missiles.

The 9M38 rocket is made according to a single-stage design. It was distinguished by a cylindrical body of high aspect ratio and had an ogival head fairing. In the middle part of the hull there were X-shaped wings of small aspect ratio, and in the tail there were rudders of exactly the same design. The missile, with a length of 5.5 meters and a launch weight of 690 kg, was equipped with a dual-mode solid fuel engine, a semi-active radar homing head and a high-explosive fragmentation warhead. To prevent changes in alignment as the charge burns out, the engine was specially placed in the central part of the housing and additionally equipped with a long nozzle-gas duct.

The new 9K37 Buk air defense system made it possible to hit targets at altitudes of up to 20 km and ranges of up to 30 km. Reaction time – 22 seconds. It took about 5 minutes to get ready for work. The probability of hitting a target with a missile that accelerates in flight to 850 meters per second is up to 0.9. The probability of hitting a helicopter with one missile is up to 0.6. The probability of hitting a cruise missile with the first missile defense system is up to 0.5.

Modern tests of this air defense system began at the Emba training ground in the fall of 1977 and continued until the spring of 1979. During the tests, it was possible to check the combat performance of the complex in different conditions and against different conditional targets. For example, standard equipment and other similar stations were used to monitor the air situation. During test launches, training targets were attacked using a warhead radio fuse. If the target was not hit, a second missile was launched.

During the tests, it was established that the new 3RK 9K37 has many important advantages compared to the equipment that was already in service. The composition of the electronic equipment of the SOU and SOC ensured high reliability of detection of air targets due to the presence of its own equipment for self-propelled combat units. The updated composition of the equipment of various components of the complex, including the missile, contributed to greater noise immunity. In addition, the missile carried a heavy warhead, which made it possible to increase the accuracy of hitting a target.

Based on the results of modifications and tests, the 9K37 Buk air defense system was put into service in 1990. New complexes began to be used as part of missile brigades. Each formation included 1 brigade control center from the Polyana-D4 automated control system and 4 divisions. The division had its own command post 9S470, three batteries with 2 SOU 9A310 and 1 ROM 9A39 in each, a detection and target designation station 9S18. In addition, the brigades had a communications, maintenance and support unit.

SAM 9K37-1 "Buk-1"/"Kub-M4"

In 1974, due to the urgent need to re-equip the air defense units of the ground forces, it was decided to create a simplified modification of the 9K37 complex, developed using existing units and components. It was assumed that such air defense systems, designated 9K37-1 Buk-1, would complement the existing Kub-M3 systems in the troops. Thus, each of the 5 batteries of the regiment included a new SOU 9A38, which is part of the Buk-1 complex.

According to calculations, the cost of one 9A38 self-propelled gun will be about 1/3 of the cost of all other means of the battery, but in this case it will be possible to provide a significant increase in combat capabilities. Thus, the number of target channels of the regiment would double from 5 to 10, and the number of ready-to-use missiles would also increase from 60 to 75. Thus, the modernization of air defense units with new combat vehicles absolutely paid off.

The SOU 9A38 in its architecture was not much different from the 9A310. A rotating platform with a 9S35 detection, tracking and illumination radar station and a launcher was made on a tracked chassis. The 9A38 self-propelled gun launcher had replaceable guides designed for the use of 2 types of missiles. Depending on the situation, available resources and combat mission, the complex could use new 9M38 or 9M9M3 missiles already in service.

State tests of the air defense system began in August 1975 and took place at the Emba training ground. The new SOU 9A38 and existing vehicles of other types took part in the tests. The target was detected using the 1S91M3 self-propelled reconnaissance and guidance system, which was located in the Kub-M3 complex, and the missiles were launched from the 2P25M3 and 9438 SOUs. Missiles of various types (from all available) were used.

During the test, it turned out that the 9S35 SOU 9A38 radar can itself detect targets at distances of up to 65-75 kilometers (at altitudes of 3 kilometers). If the target height was no more than 100 meters, then the maximum detection range was up to 35-45 kilometers. Moreover, the actual target detection indicators directly depended on the limited capabilities of the Kub-M3 equipment. Combat characteristics such as target engagement altitude or range depended on the type of missile used.

In 1978, the new 9K371 air defense system entered service as part of the 9M38 missile and the 9A38 self-propelled firing system. As a result, the Buk-1 complex received a different designation. Since the missile and self-propelled gun were only an addition to the already existing means of the Kub-M3 complex, the air defense system using the 9A38 vehicle began to be designated 2K12M4 “Kub-M4”. Thus, the 9K37-1 air defense system, a simplified version of the Buk, was formally classified as part of the previous Kub family, although at that time it was the main air defense system of the ground forces.

SAM "Buk-M1"

In the fall of 1979, another resolution of the Council of Ministers was issued, according to which it was necessary to develop a new modification of the Buk air defense system. This time the task was to improve the combat characteristics of the air defense system, increasing the level of protection against anti-radar missiles and interference. By the beginning of 1982, the organizations participating in the project had completed the development of new, more advanced elements of the complex, thereby increasing the main indicators of the system.

Experts suggested modifying the on-board equipment of the vehicles in order to improve their performance. At the same time, the complex did not have any significant differences from its predecessor. Thanks to this, different vehicles from the Buk and Buk-M1 anti-aircraft missile systems were interchangeable and were part of the same unit.

In the new project, all the main elements of the complex were finalized. The Buk-M1 air defense system was supposed to use the upgraded SOC 9S18M1 Kupol-M1 to detect the target. Now it was proposed to install a new radar station with a special phased array antenna on a tracked chassis. In order to increase the degree of unification of the complex's machines, it was decided to create the Kupol-M1 station based on the GM-567M, similar to that used in other components of the complex.

To process data received from the SOC, it was proposed to use an updated command post, namely 9S470M1 with a new set of equipment. An improved command post could ensure simultaneous reception of data from the division's air defense control center and from the complex's SOC. In addition, it was planned to introduce a training mode that would allow training in the calculations of all existing means of the complex.

SOU 9A310M1 SAM "Buk-M1" has now received an updated tracking and illumination radar. Thanks to the new equipment, it was possible to increase the acquisition range of an air target by 25-30%. The probability of recognizing ballistic and aerodynamic targets has been increased to 0.6. To increase noise immunity, the self-propelled firing system had 72 letter frequencies of illumination, which is 2 times more than that of the base 9A310.

The introduced innovations affected the combat effectiveness of the air defense system. While maintaining the general altitude and range of hitting the target and without using a new missile, the probability of hitting a fighter with one missile was increased to 0.95. The probability of hitting a helicopter remained at the same level, but the same indicator for ballistic missiles increased to 0.6.

From February to December 1982, tests of a new modernization of the 9K37 Buk-M1 air defense system were carried out at the Emba training ground. Testing showed a significant increase in key indicators compared to existing systems, thanks to which the system was adopted for service. The official adoption of the air defense system took place in 1983. Mass serial production of improved equipment took place at enterprises that had previously participated in the creation of the Buk complexes of the first 2 models.

A new type of serial equipment was used in anti-aircraft brigades of the ground forces. The components of the Buk-M1 air defense system were distributed over several batteries. Despite the modernization of individual air defense systems, the standard organization of anti-aircraft units remained unchanged. In addition, if necessary, it was allowed to use two Buk and Buk-M1 complexes in the same units.

The Buk-M1 air defense system is the first system of its series that was offered to foreign customers. The air defense system was supplied to foreign armies and was called “Ganges”. For example, in 1997, several complexes were transferred to Finland as part of the repayment of debt from Russia.

SAM 9K317 "Buk-M2"

At the end of the 80s, the creation of an updated anti-aircraft missile system of the Buk family with a more advanced 9M317 missile was completed. Then it received the designation 9K317 Buk-M air defense system. Thanks to the new guided munition, it was expected to significantly increase the height and range of hitting the target. In addition, the performance of the system should be positively affected by the use of new equipment that was installed on various machines of the complex.

But the difficult economic situation that existed in the country at that time did not allow the new complex to be put into service. This did not happen either in the late eighties or early nineties. As a result, the issue of updating the equipment of air defense units was resolved due to the “transitional” air defense system “Buk-M1-2”. At the same time, improvements to the 9K317 system continued. Moreover, work on the updated Buk-M2 project, as well as its export modification Buk-M2E, did not stop until the mid-2000s.

The most important innovation of the Buk-M project is the new 9M317 guided missile. The main differences between the new missile and the 9M38: shorter wing length, starting weight of about 720 kg and a modified hull design. By changing the design and using a new engine, it was possible to increase the firing range, its maximum value being up to 45 kilometers. At the same time, the maximum flight altitude of the target increased to 25 kilometers. To expand the combat capabilities of the hull, another innovation was introduced - now the rocket has the ability to turn off a remote fuse with detonation of the warhead at the command of a contact one. This mode of operation is suitable for using the missile against surface and ground targets.

The air defense missile system received a modified 9A317 type self-propelled gun based on the GM-569 tracked chassis. Despite the fact that the general architecture of the firing installation has not changed, the new vehicle is built on the basis of new equipment and modern components. As before, the SOU can itself find and track an air target, launch a missile and track its trajectory, and, if necessary, make adjustments through the radio command system.

SOU 9A317 has a tracking radar and illumination with a special phased array antenna. The station can track targets in a sector at an elevation angle of up to 70° and a width of 90°. The target is detected at ranges of up to 20 kilometers. The target, while in tracking mode, can be within a sector with a width of -5° to +85° in elevation and 130° in azimuth. The station is capable of detecting up to ten targets simultaneously and provides simultaneous attacks on four of them.

To increase the characteristics of the complex and ensure normal operation in difficult conditions, the self-propelled firing system is equipped with an optical-electronic system with night and day valves.

The Buk-M2 air defense system is equipped with 2 types of launcher-loading installation. The self-propelled vehicle was developed on the basis of the GM-577 chassis and is towed with a car tractor. At the same time, the general architecture is the same: 4 missiles are on the launcher and can be loaded onto the launcher or launched. Another 4 are transported on special transport cradles.

The new modification includes a new command post 9S510 on a towed semi-trailer or based on the GM-579 chassis. The automatic control unit can receive data from surveillance equipment and track up to sixty routes simultaneously. It is possible to issue target designation for 16-36 targets. As for the reaction time, it does not exceed 2 seconds.

The main target detection device in the Buk-M2 complex is the SOTs 9S18M1-3, which represents a subsequent development of the family’s systems. The new radar is equipped with a phased array antenna with electronic scanning and can detect targets at ranges of up to 160 kilometers. There are operating modes that ensure target detection when the enemy uses passive and active jamming.

It is proposed to include a missile guidance station and target illumination into the towed/self-propelled vehicles of the Buk-M2 complex. The new 9S36 vehicle is a towed semi-trailer or tracked chassis with an antenna post on a retractable mast. Thanks to such equipment, it is possible to raise the antenna to a height of up to 22 meters and thereby increase the characteristics of the RSL. Such a high altitude makes it possible to detect air targets at ranges of up to 120 kilometers. In terms of tracking and guidance characteristics, the station does not differ from the radar of self-propelled fire vehicles. It provides tracking of ten targets and allows simultaneous firing of four of them.

All changes and innovations in the composition of the complex made it possible to significantly improve its characteristics. The maximum altitude for intercepting an air target is 25 km, and the maximum range is 50 km. When attacking non-maneuvering aircraft, the greatest range is achieved. Interception of operational-tactical ballistic missiles is carried out at altitudes up to 16 km and ranges up to 20 km. It is also possible to destroy helicopters, anti-radar and cruise missiles. If necessary, the air defense missile system crew can attack radio-contrast or surface ground targets.

The first version of the 9K317 project appeared in the late 80s, but due to the difficult economic situation of the state, it was not accepted for service. The use of this complex in military operations began only in 2008. By that time, the air defense system had undergone many improvements, which made it possible to improve its characteristics.

SAM "Buk-M1-2"

Numerous political and economic problems did not allow the new 9K317 air defense system to be adopted and put into mass production. Therefore, in 1992, they decided to create a simplified, so-called “transitional” version of the complex that would not only use some components of the Buk-2, but would also be cheaper and simpler. And a solution was found - Buk-M1-2 and Ural.

The modernized Ural anti-aircraft missile system combined several improved vehicles that were represented by the further development of older technology. To launch missiles, as well as target illumination, it was necessary to use the 9A310M1-2 SOU, which works together with the 9A38M1 launch-loading machine. As for the SOC, it has not changed - Buk-M1-2 was supposed to use the 9S18M1 model station. The auxiliary means of the complex did not receive significant changes.

In order to increase the secrecy of operation and survivability, as well as to expand the range of tasks, the self-propelled fire installation received the ability to passively find a target. This meant the use of a laser rangefinder and a television-optical viewfinder. Such equipment should have been used when attacking surface or ground targets.

The modernization of various elements of the complex and the development of a new missile made it possible to significantly increase the size of the target firing zone. In addition, the probability of hitting a ballistic or aerodynamic target with one missile has increased. It became possible to fully operate the 9A310M1-2 SOU in the role of an independent air defense weapon that could detect and destroy air targets without outside help.

The Buk-M1-2 air defense system entered service with the Russian Army in 1998. In the future, several contracts were concluded for the supply of this equipment to foreign and domestic customers.

SAM "Buk-M2E"

The export version of the Buk-M2E air defense system was presented in the second half of the 2000s. It received the designation 9K317E “Buk-M2E” and was an improved version of the basic system, which had some differences in the composition of the computing and electronic equipment. Thanks to the modifications made, it was possible to improve some characteristics of the system, primarily related to its operation.

The main differences between the export version of the complex and the basic one are the modernization of electronic equipment, carried out using modern digital computers. Thanks to its high performance, such equipment allows you not only to carry out combat missions, but also to work in training mode to prepare crews. Data on the air situation and the operation of steel systems is displayed on liquid crystal monitors.

Instead of the teleoptical viewfinder that was previously available, a tele-thermal imaging system was introduced into the surveillance equipment. It allows you to find and automatically track targets in any weather conditions and at any time of the day. The equipment for documenting the operation of the complex, communications equipment and many other systems were also updated.

The RZK 9K317E self-propelled fire vehicle can be built on a wheeled or tracked chassis. Several years ago, a version of such a vehicle was presented based on the wheeled chassis of the M3KT-6922 model. Thus, a potential customer will be able to choose the chassis option that would completely suit him.

SAM "Buk-M3"

The creation of a new anti-aircraft missile system of the Buk series was announced several years ago. The 9K37M3 Buk-M3 air defense system should become an impetus for the subsequent development of this family with increased combat capabilities and characteristics. It was proposed to fulfill the requirements for the system by replacing the equipment of the Buk-M2 air defense system with new digital equipment.

The complex's facilities will receive a set of new equipment with better characteristics. The combat qualities are going to be improved through the use of a new missile along with a modified self-propelled gun. Instead of the open launcher that existed before, the new self-propelled firing system should receive special lifting mechanisms with fastenings designed for transport and launch containers. The new 9M317M rocket will be delivered in containers and launched from them. Such changes to the air defense system will increase the amount of ready-to-use ammunition.

If you look at the photo of the Buk-M3 missile launcher, you will see a vehicle based on a tracked chassis that has a rotating platform, where 2 swinging packages with 6 missile containers are mounted on each of them. Thus, without radically reworking the design of the self-propelled gun, it was possible to double the ammunition load ready for firing.

Unfortunately, the detailed characteristics of the Buk-M3 complex have not yet been disclosed. Domestic media, citing their sources, reported that the new 9M317M missile will be able to attack targets at ranges of up to 75 km and destroy them with one missile with a probability of no less than 0.95-0.97. In addition, it was reported that the experienced Buk-M3 air defense system will soon undergo a whole range of tests, after which it will be put into service.

There are rumors that the domestic defense industry plans to continue developing the Buk air defense system. The next air defense system of the family, according to unofficial data, may receive the designation “Buk-M4”. But it’s too early to talk about the characteristics of this system. At the moment, even the general requirements for it are unknown.

The military anti-aircraft missile system "Buk" (9K37) is designed to destroy, under radio countermeasure conditions, aerodynamic targets flying at speeds of up to 830 meters per second, at low and medium altitudes, at ranges up to 30,000 m, maneuvering with overloads of up to 12 units, and in the future - Lance ballistic missiles. Development began in accordance with the Resolution of the Central Committee of the CPSU and the Council of Ministers of the USSR dated January 13, 1972. it provided for the use of cooperation between manufacturers and developers, the basic composition corresponding to that previously involved in the creation of the Kub anti-aircraft missile system. At the same time, they determined the development of the M-22 (Hurricane) anti-aircraft missile system for the Navy using an anti-aircraft guided missile, integrated with the Buk air defense system.

The developer of the Buk complex as a whole was identified as NIIP (Research Institute of Instrument Engineering) NKO (research and design association) Phazotron (general director Grishin V.K.) MRP (formerly OKB-15 GKAT). Chief designer of the 9K37 complex - Rastov A.A., CP (command post) 9S470 - Valaev G.N. (then - Sokiran V.I.), self-propelled firing system 9A38 - Matyashev V.V., semi-active Doppler seeker 9E50 for anti-aircraft guided missiles - Akopyan I.G.

PZU (start-loading unit) 9A39 was created at the MKB (Machine-Building Design Bureau) "Start" MAP (formerly SKB-203 GKAT), headed by A.I. Yaskin.

The unified tracked chassis for the complex's vehicles was developed by OKB-40 MMZ (Mytishchi Machine-Building Plant) of the Ministry of Transport Engineering under the leadership of N.A. Astrov.

The development of 9M38 missiles was entrusted to SMKB (Sverdlovsk Machine-Building Design Bureau) "Novator" MAP (former OKB-8) headed by L.V. Lyulev, refusing to involve the design bureau of plant No. 134, which had previously developed a guided missile for the "Cube" complex.

SOC 9S18 (detection and target designation station) ("Dome") was developed at the NIIIP (Scientific Research Institute of Measuring Instruments) of the Ministry of Radio Industry under the leadership of Vetoshko A.P. (later - Shchekotova Yu.P.).

A set of technical tools was also developed for the complex. provision and maintenance on the automobile chassis.

Completion of the development of the anti-aircraft missile system was planned for the second quarter of 1975.

But in order to quickly strengthen the air defense of the main striking force of the Army - tank divisions - with increasing the combat capabilities of the "Cube" anti-aircraft missile regiments included in these divisions by doubling the channel capacity for targets (and, if possible, ensuring complete autonomy of the channels during work from target detection to its destruction), the Resolution of the Central Committee of the CPSU and the Council of Ministers of the USSR dated May 22, 1974 prescribed the creation of the Buk anti-aircraft missile system in 2 stages. At first, it was proposed to rapidly develop an anti-aircraft guided missile and a self-propelled firing system for the Buk anti-aircraft missile system, capable of launching 9M38 missiles and 3M9M3 missiles of the Kub-M3 complex. On this base, using other means of the Kub-M3 complex, they were supposed to create the Buk-1 (9K37-1) anti-aircraft missile system, and ensure its entry into joint testing in September 1974. At the same time, the previously prescribed deadlines and volumes of work on the Buk air defense system in its full prescribed composition were maintained.

For the Buk-1 complex, it was planned to include a Kub-M3 regiment in each anti-aircraft missile battery (5 pieces), in addition to one SURN and 4 self-propelled launchers, to introduce a 9A38 self-propelled firing system from the Buk missile system. Thus, thanks to the use of a self-propelled firing system, the cost of which was about 30% of the cost of the rest of the battery, the number of combat-ready anti-aircraft guided missiles in the Kub-M3 regiment increased from 60 to 75, and target channels - from 5 to 10.

The 9A38 self-propelled firing system, mounted on the GM-569 chassis, seemed to combine the functions of the SURN and the self-propelled launcher used as part of the Kub-M3 complex. The 9A38 self-propelled firing system provided search in the designated sector, detected and captured targets for automatic tracking, solved pre-launch tasks, launched and homing 3 missiles (3M9M3 or 9M38) located on it, as well as 3 3M9M3 guided missiles located on the 2P25M3 self-propelled launcher, associated with it. The combat operation of the fire installation was carried out both autonomously and under control and target designation from the SURN.

The 9A38 self-propelled firing system consisted of:
- digital computing system;
- Radar 9S35;
- a starting device equipped with a power servo drive;
- television-optical viewfinder;
- ground-based radar interrogator operating in the “Password” identification system;
- telecode communication equipment with SURN;
- wire communication equipment with SPU;
- autonomous power supply systems (gas turbine generator);
- navigation, topographical reference and orientation equipment;
- life support systems.

The weight of the self-propelled firing system, including the weight of the combat crew consisting of four people, was 34 thousand kg.

The progress that has been made in the creation of ultra-high-frequency devices, electromechanical and quartz filters, and digital computers has made it possible to combine the functions of target detection, illumination and target tracking stations in the 9S35 radar. The station operated in the centimeter wavelength range, it used a single antenna and two transmitters - continuous and pulsed radiation. The first transmitter was used to detect and automatically track a target in a quasi-continuous mode of radiation or, in case of difficulties with unambiguous determination of range, in a pulse mode with pulse compression (linear frequency modulation is used). The continuous radiation transmitter was used to illuminate targets and anti-aircraft guided missiles. The station's antenna system carried out a sector search using the electromechanical method, target tracking in range and angular coordinates was carried out using the monopulse method, and signal processing was carried out by a digital computer. The width of the antenna pattern of the target tracking channel in azimuth was 1.3 degrees and in elevation - 2.5 degrees, the illumination channel - in azimuth - 1.4 degrees and in elevation - 2.65 degrees. The search sector review time (in elevation - 6-7 degrees, in azimuth - 120 degrees) in autonomous mode - 4 seconds, in control mode (in elevation - 7 degrees, in azimuth - 10 degrees) - 2 seconds. The average transmitter power of the target detection and tracking channel was: in the case of using quasi-continuous signals - at least 1 kW, in the case of using signals with linear frequency modulation - at least 0.5 kW. The average power of the target illumination transmitter is at least 2 kW. The noise figure of the station's direction-finding and surveillance receivers is no more than 10 dB. The transition time of the radar station between standby and combat modes was less than 20 seconds. The station could unambiguously determine the speed of targets with an accuracy of -20 to +10 m/s; ensure selection of moving targets. The maximum range error is 175 meters, the root-mean-square error in measuring angular coordinates is 0.5 d.u. The radar station was protected from passive, active and combined interference. The equipment of the self-propelled firing system was used to block the launch of an anti-aircraft guided missile when accompanied by a helicopter or aircraft.

The 9A38 self-propelled firing system was equipped with a launcher with interchangeable guides designed for 3 3M9M3 guided missiles or 3 9M38 guided missiles.

The 9M38 anti-aircraft missile used a dual-mode solid propellant engine (the total operating time was about 15 seconds). The use of a ramjet engine was abandoned not only due to the high resistance in passive sections of the trajectory and instability of operation at a high angle of attack, but also because of the complexity of its development, which largely determined the delay in creating the Kub air defense system. The power structure of the engine chamber was made of metal.

The general design of an anti-aircraft missile is X-shaped, normal, with a low aspect ratio wing. The appearance of the missile resembled American-made naval anti-aircraft missiles of the Standard and Tartar families. This corresponded to strict restrictions on overall dimensions when using 9M38 anti-aircraft guided missiles in the M-22 complex, which was developed for the USSR Navy.

The rocket was carried out according to the normal design and had a low aspect ratio wing. In the front part, a semi-active hydroelectric pump, autopilot equipment, power supply and warhead are sequentially placed. To reduce the spread of alignment over flight time, the combustion chamber of the solid propellant rocket engine was placed closer to the middle, and the nozzle block was equipped with an elongated gas duct, around which the steering drive elements are located. The rocket has no parts that separate during flight. The diameter of the rocket was 400 mm, the length was 5.5 m, and the span of the rudders was 860 mm.

The diameter of the front compartment (330 mm) of the rocket was smaller in relation to the tail compartment and engine, which is determined by the continuity of some elements with the 3M9 family. The missile was equipped with a new homing head with a combined control system. The complex implemented homing of an anti-aircraft guided missile using the proportional navigation method.

The 9M38 anti-aircraft guided missile ensured the destruction of targets at altitudes from 25 to 20 thousand m at a range of 3.5 to 32 km. The rocket's flight speed was 1000 m/s and maneuvered with overloads of up to 19 units.

The weight of the rocket is 685 kg, including a 70 kg warhead.

The design of the missile ensured its delivery to the troops in a fully equipped form in the 9YA266 transport container, as well as operation without routine maintenance and inspections for 10 years.

From August 1975 to October 1976, the Buk-1 anti-aircraft missile system, consisting of the 1S91M3 SURN, the 9A38 self-propelled firing system, the 2P25M3 self-propelled launchers, the 9M38 and 3M9M3 anti-aircraft guided missiles, as well as the 9V881 MTO (maintenance vehicle) underwent state testing. tests at the Embensky test site (head of the test site Vashchenko B.I.) under the leadership of a commission headed by Bimbash P.S.

As a result of the tests, the detection range of aircraft by a radar station of a self-propelled firing system operating in autonomous mode at altitudes of more than 3 thousand meters was obtained - from 65 to 77 km; at low altitudes (from 30 to 100 meters) the detection range decreased to 32-41 kilometers. Detection of helicopters at low altitudes occurred at a range of 21-35 km. When operating in a centralized mode, due to the limited capabilities of the SURN 1S91M2 issuing target designation, the detection range for aircraft at altitudes of 3-7 km was reduced to 44 kilometers and for targets at low altitudes - to 21-28 km. In autonomous mode, the operating time of a self-propelled firing system (from the moment of target detection to the launch of a guided missile) was 24-27 seconds. The loading/discharging time for three 9M38 or 3M9M3 anti-aircraft guided missiles was 9 minutes.

When firing a 9M38 anti-aircraft guided missile, the destruction of an aircraft flying at altitudes of more than 3 thousand meters was ensured at a range of 3.4-20.5 kilometers, at an altitude of 30 meters - 5-15.4 kilometers. The affected area in height is from 30 meters to 14 kilometers, in terms of the heading parameter - 18 kilometers. The probability of hitting an aircraft with one 9M38 guided missile is 0.70-0.93.

The complex entered service in 1978. Since the 9A38 self-propelled firing system and the 9M38 anti-aircraft guided missile were means complementary to the Kub-M3 anti-aircraft missile system, the complex was given the name "Kub-M4" (2K12M4).

The 9A38 self-propelled firing systems were produced by the Ulyanovsk Mechanical Plant MRP, and the 9M38 anti-aircraft guided missiles were produced by the Dolgoprudny Machine-Building Plant MAP, which previously produced 3M9 missiles.

The Kub-M4 complexes, which appeared in the air defense forces of the Ground Forces, made it possible to significantly increase the effectiveness of the air defense of the tank divisions of the SV SA.

Joint tests of the Buk air defense system in its full set of assets took place from November 1977 to March 1979 at the Embensky training ground (chief V.V. Zubarev) under the leadership of a commission headed by Yu.N. Pervov.

The combat assets of the Buk anti-aircraft missile system had the following characteristics.

The 9S470 command post installed on the GM-579 chassis provided the reception, display and processing of data on targets coming from the 9S18 station (detection and target designation station) and 6 self-propelled firing systems 9A310, as well as from higher command posts; selection of dangerous targets and their distribution between self-propelled firing installations in automatic and manual modes, setting their sectors of responsibility, displaying information about the presence of anti-aircraft guided missiles on firing and launch-loading installations, about the letters of the illumination transmitters of firing installations, about work on targets, about the mode operation of the detection and target designation station; organizing the operation of the complex in the event of interference and the use of anti-radar missiles; documentation of training and work of calculation of CP. The command post processed messages about 46 targets located at altitudes of up to 20 thousand m in a zone with a radius of 100 thousand m per station review cycle and issued up to 6 target designations for self-propelled firing systems (accuracy in elevation and azimuth - 1 degree, in range - 400-700 meters). The weight of the command post, including a combat crew of 6 people, is no more than 28 tons.

Coherent-pulse three-coordinate detection and target designation station "Dome" (9С18) of the centimeter range, which has electronic scanning of the beam according to the elevation angle in the sector (set to 30 or 40 degrees) with mechanical (in a given sector or circular) rotation of the antenna in azimuth (using a hydraulic drive or electric drive). The 9S18 station was intended to detect and identify air targets at a range of up to 110-120 kilometers (at an altitude of 30 meters - 45 kilometers) and transmit information about the air situation to the 9S470 command post.

Depending on the presence of interference and the established sector in elevation, the speed of viewing the space during a circular view was 4.5 - 18 seconds and when viewing in a 30-degree sector 2.5 - 4.5 seconds. Radar information was transmitted to the 9S470 command post via a telecode line in the amount of 75 marks during the review period (4.5 seconds). Root mean square errors in measuring target coordinates: in elevation and azimuth - no more than 20", in range - no more than 130 meters, resolution in elevation and azimuth - 4 degrees, in range - no more than 300 meters.

To ensure protection from targeted interference, we used tuning of the carrier frequency between pulses, from response interference - the same plus blanking of range intervals via the automatic recording channel, from asynchronous pulse interference - blanking of range sections and changing the slope of linear frequency modulation. The detection and target designation station with noise barrage of self-cover and external cover of specified levels ensured detection of a fighter at ranges of at least 50 thousand m. The station ensured the tracking of targets with a probability of at least 0.5 against the background of passive interference and local objects using a scheme for selecting moving targets with automatic wind speed compensation. The detection and target designation station was protected from proto-radar missiles by software tuning the carrier frequency in 1.3 seconds, switching to circular polarization of the sounding signal or to flicker mode (intermittent radiation).

Station 9S18 consisted of an antenna post consisting of a reflector with a truncated parabolic profile and a feed in the form of a waveguide ruler (providing electronic scanning of the beam in the elevation plane), a rotating device, and an antenna folding device; transmitting device (average power 3.5 kW); receiving device (noise factor up to 8) and other systems.

All station equipment was placed on a modified self-propelled chassis "ob. 124" of the SU-100P family. The tracked base of the detection and target designation station was different from the chassis of other means of the Buk anti-aircraft missile system, since the Kupol radar station was initially intended to be developed outside the anti-aircraft complex - as a means of detecting the divisional air defense of the Ground Forces.

The time it took to transfer the station between traveling and combat positions was up to 5 minutes, and from duty to operating mode - about 20 seconds. The weight of the station (including a crew of 3 people) is up to 28.5 tons.

In its design and purpose, the 9A310 self-propelled firing system differed from the 9A38 self-propelled firing system of the Kub-M4 (Buk-1) anti-aircraft missile system in that, using a telecode line, it communicated not with SURN 1S91M3 and self-propelled PU 2P25M3, but with the command clause 9C470 and ROM 9A39. Also, on the launcher of the 9A310 installation there were not three, but four 9M38 anti-aircraft guided missiles. The time it took to transfer the installation from traveling to combat position was less than 5 minutes. The time to transfer from standby mode to operating mode, in particular, after changing position with the equipment turned on, was up to 20 seconds. Loading the 9A310 firing system with four anti-aircraft guided missiles from the launch-loading installation took 12 minutes, and from a transport vehicle - 16 minutes. The mass of the self-propelled firing system, including a combat crew of 4 people, was 32.4 tons.

The length of the self-propelled firing system is 9.3 meters, width - 3.25 meters (in working position - 9.03 meters), height - 3.8 meters (7.72 meters).

The 9A39 launch-loading installation installed on the GM-577 chassis was intended for transporting and storing eight anti-aircraft guided missiles (on the launcher - 4, on fixed cradle - 4), launching 4 guided missiles, self-loading its launcher with four missiles from the cradle, self-loading 8- yu missile launcher from a transport vehicle (charging time 26 minutes), from ground cradle and transport containers, discharge and on the launcher of a self-propelled firing system with 4 anti-aircraft guided missiles. Thus, the launch-loading installation of the Buk anti-aircraft missile system combined the functions of the TZM and the self-propelled launcher of the Kub complex. The launch-loading installation consisted of a starting device with a servo power drive, a crane, supports, a digital computer, equipment for topographical referencing, navigation, telecode communication, orientation, power supply and energy supply units. The mass of the installation including a combat crew of 3 people is 35.5 tons.

Dimensions of the launch-loading installation: length - 9.96 meters, width - 3.316 meters, height - 3.8 meters.

The complex's command post received data on the air situation from the command post of the Buk anti-aircraft missile brigade (automated control system Polyana-D4) and from the detection and target designation station, processed them and issued instructions to self-propelled firing units that carried out search and capture for automatic tracking targets. When the target entered the affected area, anti-aircraft guided missiles were launched. To guide the missiles, the proportional navigation method was used, which ensured high guidance accuracy. When approaching the target, the homing head issued a command to the radio fuse for close arming. When approaching a distance of 17 meters, the command was carried out detonation of the warhead. If the radio fuse failed to operate, the anti-aircraft guided missile self-destructed. If the target was not hit, a second missile was launched at it.

Compared to the Kub-M3 and Kub-M4 anti-aircraft missile systems, the Buk air defense system had higher operational and combat characteristics and provided:
- simultaneous shelling of up to six targets by a division, and if necessary, execution of up to 6 independent combat missions in the case of autonomous use of self-propelled firing systems;
- greater detection reliability thanks to the organization of a joint survey of the space by 6 self-propelled firing systems and a detection and target designation station;
- increased noise immunity due to the use of a special type of illumination signal and an on-board computer for the homing head;
- greater efficiency in hitting targets due to the increased power of the anti-aircraft guided missile warhead.

Based on the results of tests and modeling, it was determined that the Buk anti-aircraft missile system can fire at non-maneuvering targets flying at altitudes from 25 meters to 18 kilometers at speeds up to 800 m/s, at ranges from 3–25 km (at speeds up to 300 m /s - up to 30 km) with a heading parameter of up to 18 kilometers with the probability of being hit by one guided missile - 0.7-0.8. When firing at maneuvering targets (overload up to 8 units), the probability of defeat was 0.6.

Organizationally, the Buk anti-aircraft missile systems were consolidated into missile brigades, consisting of: a command post (a combat control post from the Polyana-D4 automated control system), 4 anti-aircraft missile divisions with their own command posts 9S470, a detection and target designation station 9S18, a platoon communications and three anti-aircraft missile batteries (each with two 9A310 self-propelled firing installations and one 9A39 launcher-loading installation), maintenance and support units.

The Buk anti-aircraft missile brigade was controlled from the army air defense command post.

The Buk complex was adopted by the ground forces' air defense forces in 1980. Serial production of combat weapons of the Buk complex was mastered in the cooperation involved in the Kub-M4 air defense system. New equipment - KP 9S470, self-propelled firing systems 9A310 and detection and target designation stations 9S18 - were produced by the Ulyanovsk Mechanical Plant MRP, launch-loading installations 9A39 - at the Sverdlovsk Machine-Building Plant named after. Kalinina MAP.

In accordance with the Resolution of the Central Committee of the CPSU and the Council of Ministers of the USSR dated November 30, 1979, the Buk anti-aircraft missile system was modernized to increase its combat capabilities and the protection of the complex's electronic equipment from anti-radar missiles and interference.

As a result of tests that were carried out in February-December 1982 at the Embensky training ground (chief - V.V. Zubarev) under the leadership of a commission headed by B.M. Gusev, it was found that the modernized "Buk-M1" compared to the anti-aircraft missile system "Buk" provides a large area of ​​destruction of aircraft, can shoot down an ALCM cruise missile with a probability of being hit by one guided missile of more than 0.4, "Hugh-Cobra" helicopters - 0.6-0.7, hovering helicopters - 0.3-0, 4 at ranges from 3.5 to 10 kilometers.

The self-propelled firing system uses 72 letter illumination frequencies instead of 36, which helps to increase protection from intentional and mutual interference. Recognition of 3 classes of targets is provided - ballistic missiles, airplanes, helicopters.

Compared to the 9S470 command post, the 9S470M1 KP provides simultaneous reception of data from its own detection and target designation station and about 6 targets from the air defense control post of a tank (motorized rifle) division or from the army air defense command post, as well as comprehensive training for crews of anti-aircraft missile systems.

Compared to the 9A310 self-propelled firing system, the 9A310M1 installation provides target detection and acquisition for automatic tracking at long ranges (approximately 25-30 percent), as well as recognition of ballistic missiles, helicopters and aircraft with a probability of more than 0.6.

The complex uses a more advanced detection and target designation station "Kupol-M1" (9S18M1), which has a flat elevation phased antenna array and a GM-567M self-propelled tracked chassis. The same type of tracked chassis is used at the command post, self-propelled firing installation and launch-loading installation.

The detection and target designation station has the following dimensions: length - 9.59 meters, width - 3.25 meters, height - 3.25 meters (in working position - 8.02 meters), weight - 35 tons.

The Buk-M1 complex provides for effective technical and organizational measures for protection against anti-radar missiles.

The combat assets of the Buk-M1 air defense system are interchangeable with similar assets of the Buk complex without modifications. The standard organization of technical units and combat formations is similar to that of the Buk anti-aircraft missile system.

The technological equipment of the complex consists of:
- 9V95M1E - automated control and testing mobile station vehicles based on ZIL-131 and a trailer;
- 9V883, 9V884, 9V894 - repair and maintenance vehicles based on Ural-43203-1012;
- 9V881E - maintenance vehicle based on Ural-43203-1012;
- 9T229 – transport vehicle for 8 anti-aircraft guided missiles (or six containers with guided missiles) based on the KrAZ-255B;
- 9T31M - truck crane;
- MTO-ATG-M1 - maintenance workshop based on ZIL-131.

The Buk-M1 complex was adopted by the Air Defense Forces of the Ground Forces in 1983 and its serial production was established in cooperation with industrial enterprises that produced the Buk anti-aircraft missile system.

In the same year, the Navy's M-22 Uragan anti-aircraft missile system, unified with the Buk complex on 9M38 guided missiles, also entered service.

Complexes of the Buk family called "Gang" were proposed to be supplied abroad.

During the Defense 92 exercise, anti-aircraft missile systems of the Buk family successfully fired at targets based on the R-17, Zvezda ballistic missiles and Smerch MLRS missiles.

In December 1992, the President of the Russian Federation signed a decree on further modernization of the Buk air defense system - the creation of an anti-aircraft missile system, which was repeatedly presented at various international exhibitions under the name "Ural".

In 1994-1997, a cooperation of enterprises led by Tikhonravov Research Institute carried out work on the Buk-M1-2 anti-aircraft missile system. Thanks to the use of the new 9M317 missile and the modernization of other air defense systems, for the first time it was possible to destroy Lance tactical ballistic missiles and aircraft missiles at a range of up to 20 thousand meters, elements of high-precision and surface ships at a range of up to 25 thousand meters and ground targets (large command points, launchers, aircraft at airfields) at a range of up to 15 thousand meters. The effectiveness of defeating cruise missiles, helicopters and aircraft has increased. The boundaries of the affected zones in range increased to 45 kilometers and in height - up to 25 kilometers. The new missile provides for the use of an inertial-corrected control system with a semi-active radar homing head with guidance using the proportional navigation method. The rocket had a launch mass of 710-720 kilograms with a warhead mass of 50-70 kilograms.

Externally, the new 9M317 missile differed from the 9M38 in its shorter wing chord length.

In addition to the use of an improved missile, it was planned to introduce a new means into the air defense system - a radar station for illuminating targets and guiding missiles with the installation of an antenna at a height of up to 22 meters in the working position (a telescopic device was used). With the introduction of this radar station, the combat capabilities of the air defense system to destroy low-flying targets, such as modern cruise missiles, are significantly expanded.

The complex includes a command post and two types of firing sections:
- four sections, including one modernized self-propelled firing installation each, carrying four guided missiles and capable of firing four targets simultaneously, and a launcher-loading installation with 8 guided missiles;
- two sections, including one illumination and guidance radar station, capable of also providing simultaneous fire at four targets, and two launch-loading installations (each with eight guided missiles).

Two versions of the complex were developed - mobile on GM-569 tracked vehicles (used in previous modifications of the Buk air defense system), as well as transported by KrAZ vehicles and on road trains with semi-trailers. In the latter option, the cost was reduced, but maneuverability deteriorated and the deployment time of the anti-aircraft missile system from the march increased from 5 minutes to 10-15.

In particular, the Start MKB, during the modernization of the Buk-M air defense system (Buk-M1-2, Buk-M2 complexes), developed the 9A316 launcher-loader and the 9P619 launcher on a tracked chassis, as well as PU 9A318 on a wheeled chassis.

The process of development of the Kub and Buk families of anti-aircraft missile systems as a whole represents an excellent example of the evolutionary development of military equipment and weapons, ensuring a continuous increase in the air defense capabilities of the ground forces at relatively low costs. This path of development, unfortunately, creates the preconditions for gradual technical behind. For example, even in promising versions of the Buk air defense system, the more reliable and safe scheme for continuous operation of missile defense systems in a transport and launch container, all-angle vertical launch of guided missiles, introduced in other second-generation air defense missile systems, have not been used. But, despite this, in difficult socio-economic conditions, the evolutionary path of development has to be considered the only possible one, and the choice made by the developers of the Buk and Kub family complexes is the correct one.

For the creation of the Buk anti-aircraft missile system: Rastov A.A., Grishin V.K., Akopyan I.G., Zlatomrezhev I.I., Vetoshko A.P., Chukalovsky N.V. and others were awarded the USSR State Prize. The development of the Buk-M 1 anti-aircraft missile system was awarded the State Prize of the Russian Federation. The laureates of this prize were Kozlov Yu.I., Ektov V.P., Shchekotov Yu.P., Chernov V.D., Solntsev S.V., Unuchko V.R. and etc.

The main tactical and technical characteristics of the BUK type anti-aircraft missile systems:
Name - "Buk"/"Buk-M1";
The affected area in range is from 3.5 to 25-30 km/from 3 to 32-35 km;
Damage zone in height – from 0.025 to 18-20 km / from 0.015 to 20-22 km;
Damage zone by parameter – up to 18/up to 22;
The probability of hitting a fighter with one guided missile is 0.8..0.9/0.8..0.95;
The probability of hitting a helicopter with one guided missile is 0.3..0.6/0.3..0.6;
Probability of hitting a cruise missile – 0.25..0.5/0.4..0.6;
The maximum speed of targets hit is 800 m/s;
Reaction time - 22 seconds;
Anti-aircraft guided missile flight speed - 850 m/s;
Rocket mass – 685 kg;
Warhead weight - 70 kg;
Target channel – 2;
SAM channel (per target) – up to 3;
Expansion/collapse time – 5 minutes;
The number of anti-aircraft guided missiles on a combat vehicle is 4;
Year of adoption: 1980/1983.

Ctrl Enter

Noticed osh Y bku Select text and click Ctrl+Enter

During World War II, the main enemy of tanks on the battlefield was enemy artillery or armored vehicles, but soon the situation changed dramatically and enemy aircraft increasingly became one of the main enemies of tanks. The threat from the air has especially increased with the appearance of combat helicopters over the battlefield. These vehicles have become real “tank hunters”. In October 1973, eighteen Israeli Air Force Cobra helicopters destroyed ninety Egyptian tanks in one mission without losing a single helicopter.

It became clear that the air defense forces must not only cover populated areas and fixed objects as before, but also cover their troops on the march. The Soviet military very quickly came to understand this fact. Work on the creation of MANPADS was intensified, and at the end of the 50s, the development of the Kub self-propelled anti-aircraft missile system began in the USSR. Its main task was to protect ground troops, including tank formations, from enemy aircraft and helicopters operating at medium and low altitudes. The complex was put into service in 1967. But already at the beginning of 1972, a resolution was adopted ordering the development of a new self-propelled air defense system to begin, which was to replace the Kub anti-aircraft missile system. Thus began the creation of the Buk, one of the most effective air defense systems in the world.

History of the creation of the Buk air defense system

The main developer of the new air defense system was the Tikhomirov Research Institute of Instrument Engineering (this organization was involved in the creation of the “Cube”). At the same time, work began on the development of the Uragan anti-aircraft complex for the needs of the Navy using a single missile.

The developers had to invest in a very short time frame, so the commissioning of the complex was divided into two stages. Initially, all efforts were devoted to creating a new 9M38 anti-aircraft missile (SAM) and a self-propelled firing system (SFA). They became part of the batteries of the “Cube” complex and significantly increased its combat power. It was in this form that the 2K12M4 “Kub-M4” air defense system was adopted by the USSR Ground Forces in 1978.

The new modernized “Cube” had much better technical characteristics: the number of target channels increased (from 5 to 10), the range and height of destruction of air targets increased, and now the complex could destroy faster targets.

The second stage of creating a new air defense system involved the creation of an integral complex consisting of a 9A310 self-propelled launcher armed with new M938 anti-aircraft missiles, a 9S18 target detection station, a 9S470 command post and a 9A39 charging unit. In 1977, testing of the new air defense system began, which continued until 1979. The tests were successful, and the complex was put into service. It received the designation "Buk-1".

The new anti-aircraft missile system was intended to combat air targets at low and medium altitudes (25-18,000 meters) and at a range of 3 to 25 kilometers. The probability of hitting the target was 0.6. All elements of the complex are placed on unified tracked vehicles with increased cross-country ability.

Almost immediately after the 9K37 air defense system was put into service, work began on its modernization in 1979. They were completed in 1982, in the same year they successfully conducted tests and the modernized Buk-M1 air defense system was put into service. The new anti-aircraft missile system has had a number of basic characteristics significantly improved. The affected area was significantly increased, the probability of hitting cruise missiles and helicopters increased, and it became possible to recognize targets. In addition, the Buk-M1 has become much less vulnerable to anti-radar missiles.

The next stage of modernization of the Buk air defense system occurred in the early 90s of the last century. The anti-aircraft complex was equipped with a new 9M317 anti-aircraft missile, which had much more “advanced” characteristics compared to its predecessor (although the complex can also be armed with the standard 9M38M1 missile for the Buk). This missile hit air targets at an altitude of up to 25 kilometers and at a range of up to 50. The new anti-aircraft missile system was designated 9K37M1-2 “Buk-M1-2”. Work on the air defense system took place from 1993 to 1996. In 1998, the Buk-M1-2 was adopted by the Russian army. Also, the Buk-M1-2 complex provides for the introduction of a new component - a special vehicle with a radar used to illuminate targets and guide missiles. In this case, the radar antenna is located on a telescopic lift, which raises it to a height of 22 meters. This additional element significantly increases the effectiveness of the air defense system, especially against low-flying, high-speed targets (cruise missiles).

Since the mid-80s, work has been in full swing on another modification of the Buk complex, which was supposed to be able to fire at 24 air targets and have a much larger destruction radius (up to 50 kilometers). This modification was called 9K317 Buk-M2. This modification was also planned to be equipped with the 9M317 missile. In the 90s, tests of the new complex were carried out, however, due to the difficult situation in the country and in the Russian economy, it never went into production. Only fifteen years later, the Buk-M2 was finalized and began to be delivered to the troops only in 2008.

Currently, work is underway on the next modification of the legendary air defense system - 9K317M Buk-M3. It will be able to track and engage up to 36 targets simultaneously. They plan to equip the complex with a new missile with a radar guidance system. The complex will be able to operate successfully in conditions of strong electronic countermeasures. The new anti-aircraft missile system is planned to be put into service in 2015.

Description of the Buk anti-aircraft missile system

The Buk-M1 air defense system is designed to destroy army, tactical and strategic aviation aircraft, fire support helicopters, cruise missiles and unmanned aerial vehicles. This complex is capable of effectively resisting massive raids by enemy aircraft and reliably covering troops or military-industrial facilities. This complex can successfully operate under electronic jamming conditions and in any weather conditions. The Buk-M1 air defense system has a circular radius of destruction of targets.

One Buk battery consists of six self-propelled firing systems, three charging vehicles, a target acquisition station and a command post. The GM-569 tracked chassis is used as the base for all vehicles of the complex. It provides the Buks with high maneuverability, maneuverability and speed of deployment of the complex. All systems of the complex have an autonomous power supply.

The command post (CP) of the Buk complex is designed to control the operation of the complex. Can operate in conditions where the enemy actively uses electronic interference. The command post can process information about 46 air targets; it provides reception and processing of data from six fire control systems and a target detection station, as well as from other air defense units. The command post identifies air targets, determines the most dangerous of them and assigns a task to each SDA.

The target acquisition station (TDS) is a 9S18 “Dome” radar operating in the centimeter range, capable of detecting air targets at an altitude of up to 20 and a range of up to 120 kilometers. The station has a high level of noise immunity.

The Buk-M1 self-propelled firing system (SOU) is equipped with four missiles and a 9S35 centimeter-range radar. The self-propelled gun is designed to search, track and destroy air targets. The installation contains a digital computer complex, communication and navigation equipment, a television-optical sight, and an autonomous life support system. The SOU can operate autonomously, without being tied to a command post or target detection station. True, in this case the affected area is reduced to 6-7 degrees in angle and 120 degrees in azimuth. The SOU can perform its functions in conditions of radio-electronic interference.

The charging installation of the Buk complex can store, transport and load eight missiles.

The complex is armed with a 9M38 anti-aircraft solid-fuel single-stage missile. It has a radar guidance system with a semi-active operating principle and a high-explosive fragmentation warhead. At the initial stage of the flight, correction is carried out by radio signals, and at the final stage - due to homing.

To destroy air targets, a warhead weighing 70 kilograms is used, which is detonated using a proximity fuse 17 meters from the target. The damaging elements of a missile are the shock wave and fragments. The length of the rocket is 5.5 meters, its largest diameter is 860 mm, and the total weight is 685 kilograms. The rocket is equipped with a solid propellant engine operating in two modes, with a total operating time of 15 seconds.

Specifications

Damage zone, km:
- range
- height
- parameter
3,32..35
0,015..20-22
until 22
Probability of target hit
- fighter type
- helicopter type
- cruise missile type
0,8..0,95
0,3..0,6
0,4..0,6
Maximum target speed m/s 800
Reaction time, s: 22
SAM flight speed, m/s 850
Rocket mass, kg 685
Weight of warhead, kg 70
Channel by target 2
SAM channel 3
Expansion (collapse) time, min 5
Number of missiles on a combat vehicle 4

At the moment, more than ten countries are armed with the Buk air defense system of various modifications. Negotiations are currently underway with several other countries. There are several export versions of the complex. Further work is being carried out to modernize it.


ANTI-AIRcraft MISSILE SYSTEM

MEDIUM RANGE 9K317 "BUK-M2"

AIR DEFENSE MISSILE COMPLEX MEDIUM-RANGE 9K317 “BUK-M2”

20.12.2016


On the territory of the Krasnodar Territory, a new anti-aircraft missile brigade of the Southern Military District (SMD) received the Battle Banner and took up combat duty.
The unit is staffed by both conscript and contract servicemen; its three divisions are armed with modern Buk-M2 anti-aircraft missile systems.
All missile battalion personnel have at least a specialized secondary education. In addition, before being assigned to military positions, military personnel underwent appropriate training at military air defense training centers.
Press service of the Southern Military District

25.12.2016


Buk-M2 anti-aircraft missile systems will no longer be supplied to the Russian Ground Forces; re-equipment with Buk-M3 systems is underway.
This was announced by the head of the military air defense of the Russian Ground Forces, Lieutenant General Alexander Leonov.
“There will be no more deliveries of Buk-M2 (to the Ground Forces). At the beginning of next year, retraining for the Buk-M3 complexes will begin,” he said on the Ekho Moskvy radio station.
TASS

The Research Institute of Instrument Engineering was appointed its main developer, and the 9A39 launch-loading installations were created at the Start Machine-Building Design Bureau. Unified tracked chassis for the complex's combat vehicles were developed at OKB-40 of the Mytishchi Machine-Building Plant, while the design of 9M38 missiles was entrusted to the Sverdlovsk machine-building design bureau "Novator". The 9S18 “Dome” detection and target designation station was developed at the Research Institute of Measuring Instruments. In the West, the complex received the designation SA-11 Gadfly (“Bumblebee”).


The Buk air defense system included:

— Anti-aircraft missile SAM 9M38 It was equipped with a dual-mode solid propellant engine (total operating time - 15 seconds), and in the front part a semi-active homing head, autopilot equipment, power supplies and a high-explosive fragmentation warhead were sequentially placed.

— Command post 9S470 Its function is to receive and process information about targets coming from the 9S18 detection station and six self-propelled firing systems, select targets and distribute them between installations. The command post processed messages about 46 targets at an altitude of up to 20 km in a zone with a radius of 100 km.

— Detection and target designation station 9S18 “Dome” A three-coordinate coherent-pulse station in the centimeter range with electronic scanning of the beam in the sector and mechanical rotation of the antenna was intended for detecting and identifying air targets at ranges of up to 120 km and transmitting information to the command post.

— Self-propelled firing system 9A310 The time for transferring the installation from the traveling position to the combat position was no more than 5 minutes, and the time for transferring from standby mode to working mode was no more than 20 seconds; charging the installation with four missiles took no more than 12 minutes. The length of the 9A310 is 9.3 m, the width is 3.25 m (9.03 m in working position), and the height is 3.8 m (7.72 m, respectively).

— Launch-loading installation 9A39 It was intended for transporting and storing eight missiles (4 each on the launcher and on fixed cradle), launching four missiles, self-loading its launcher with four missiles from the cradle and self-loading eight missiles from a transport vehicle (in 26 minutes). The launch-loading installation, in addition to the starting device, crane and cradle, included: a digital computer, navigation equipment, topographical reference and orientation, a communication system, energy supply and power supply units. The length of the launcher-loading installation is 9.96 m, width - 3.316 m, height - 3.8 m.


Joint tests of the Buk complex were carried out from November 1977 to March 1979 at the Emba training ground in Kazakhstan. “Buk” surpassed all similar systems that preceded it (Kub-M3 and Kub-M4 air defense systems), demonstrating higher combat and operational characteristics.

The installation ensured simultaneous fire by a division on up to six targets, and, if necessary, the execution of up to six independent combat missions with the autonomous use of self-propelled fire systems. The Buk was distinguished by greater reliability of target detection due to the organization of a joint survey of the space by a detection station and six self-propelled firing systems.

Based on the results of fire tests, it was determined that the Buk air defense system provides fire at non-maneuvering targets flying at speeds of up to 800 m/s at altitudes from 25 m to 18 km, at ranges from 3 to 25 km (up to 30 km at target speeds of up to 300 m/s) and with a probability of damage equal to 0.7−0.8. When firing at targets maneuvering with overloads of up to 8 units, the probability of defeat was reduced to 0.6. As a result, the Buk complex was adopted by the air defense forces in 1980.

"Buk-M1"

In accordance with the Resolution of the Central Committee of the CPSU and the Council of Ministers of the USSR dated November 30, 1979, the Buk air defense system was modernized to increase its combat capabilities, the protection of electronic equipment from interference and anti-radar missiles. The combat assets of the Buk-M1 complex were interchangeable with the Buk air defense system without modifications; the standard organization of combat formations and technical units was also similar to the Buk complex.


The 9A310M1 self-propelled firing system, compared to the 9A310 installation, ensured detection and acquisition of targets for tracking at long ranges (25-30%), as well as recognition of aircraft, ballistic missiles and helicopters with a probability of at least 0.6.

The 9S470M1 command post, compared to the 9S470 command post of the Buk complex, provided simultaneous reception of information from its own detection and target designation station and about six targets from the control post.

The complex used a more advanced detection and target designation station 9S18M1 (“Kupol-M1”), which had a self-propelled tracked chassis GM-567M, the same type as a command post, a self-propelled firing system and a launch-loading installation.


"Buk-M1−2"

Cooperation of enterprises led by NIIP named after V.V. Tikhomirov in 1994-1997, work was carried out to create a modernized Buk-M1-2 complex. As a result, it turned into a universal fire weapon: through the use of the new 9M317 missile and the modernization of other weapons, for the first time it was possible to destroy tactical combat missiles, aircraft missiles at ranges of up to 20 km, elements of precision weapons, ships at ranges of up to 25 km and ground targets ( aircraft at airfields, launchers, large command posts) at ranges up to 15 km. The effectiveness of destruction was also increased, the boundaries of the affected zones were increased to 45 km in range and up to 25 km in altitude.


The Buk-M1−2 complex differs from its predecessor in the use of the new 9M317 missile. In addition, it is planned to introduce a new tool into the complex - radar illumination of targets and missile guidance with the antenna placed in the working position at a height of up to 22 meters using a telescopic device. Thanks to this, the combat capabilities of the complex to destroy low-flying targets, in particular, modern cruise missiles, have significantly expanded.

The complex is offered in two versions - mobile on tracked vehicles of the GM-569 family, similar to those used in previous modifications of the Buk complex, and also transported by KrAZ vehicles with semi-trailers. In the automotive version, with a slight reduction in cost, cross-country ability worsens and the deployment time of the anti-aircraft missile system increases from 5 to 15 minutes.

The 9A310M1−2 self-propelled firing system includes:— radar station (radar) — launcher with four missiles — digital computer system — television-optical sight — laser rangefinder — navigation and communications equipment — radio direction finder


"Buk-M2"

The multifunctional highly mobile medium-range anti-aircraft missile system 9K317 "Buk-M2" is designed to destroy tactical and strategic aircraft, cruise missiles, helicopters and other aircraft in the entire range of their practical use in conditions of intense electronic and fire counteraction from the enemy, as well as to combat tactical ballistic, aviation missiles and other elements of high-precision weapons, destruction of surface and shelling of ground targets. The Buk-M2 air defense system can be used for air defense of troops, in various forms of combat operations, administrative and industrial facilities and territories of the country.


The Buk-M2 was intended to replace the Kub and Buk anti-aircraft systems of previous generations and was supposed to enter service in the early 1990s, but this did not happen due to the collapse of the USSR and the difficult economic situation. Work to improve the complex continued in 2008, and the Ulyanovsk Mechanical Plant began mass production of a modern version of the 9K317 Buk-M2 complex, which began to enter service with the troops. In parallel, taking into account the requirements of foreign customers, an export version of the Buk-M2E, the Ural, was developed. Currently, the Buk air defense system is in service with Belarus, Azerbaijan, Venezuela, Georgia, Egypt, Cyprus, Serbia, Syria, Ukraine, and Finland.

Composition of the 9K317 Buk-M2 complex:- combat equipment - 9M317 anti-aircraft guided missiles - 9A317 and 9A318 self-propelled firing systems (towed) - 9A316 and 9A320 launchers - controls - 9S510 command post - 9S18M1-3 target detection radar - 9S36 missile illumination and guidance radar

The 9A317 self-propelled firing system is built on a GM-569 tracked chassis. During the combat operation of a self-propelled firing system, it detects, identifies, automatically tracks and recognizes the type of target, develops a flight mission, solves the launch problem, launches a missile, illuminates the target and transmits radio correction commands to the missile. The installation is capable of firing at targets both as part of an anti-aircraft missile system with target designation from a command post, and autonomously in a predetermined sector of responsibility. The complex can be transported without restrictions on speed and distance by rail, air and water transport.


"Buk-M3"

Currently, work is actively underway to create new military air defense systems, including the promising Buk-M3 air defense system. It is expected that the new complex will have 36 target channels and will be capable of hitting air targets flying at speeds of up to 3 km/s at a distance of up to 70 km and an altitude of up to 35 km, which will allow attacking highly maneuverable targets in conditions of strong radio countermeasures, hitting all existing aerodynamic targets, ground and surface targets, operational-tactical missiles. The modernized self-propelled firing system will receive a modified seven-wheel tracked chassis and 6 missiles in transport and launch containers.


The uniqueness of the Buk complex and all its modifications is that, with a significant size of the affected area in terms of range, height and parameters, the combat mission can be carried out autonomously using only one ground-based fire weapon - a self-propelled firing system. This quality makes it possible to ensure surprise in the firing of air targets from ambushes and autonomous operational change of combat position, which significantly increases the survivability of the installation.

Views