Solving fractional rational equations. Fractional rational equations

We have already learned how to solve quadratic equations. Now let's extend the studied methods to rational equations.

What is a rational expression? We have already encountered this concept. Rational expressions are expressions made up of numbers, variables, their powers and symbols of mathematical operations.

Accordingly, rational equations are equations of the form: , where - rational expressions.

Previously, we considered only those rational equations that can be reduced to linear ones. Now let's look at those rational equations that can be reduced to quadratic equations.

Example 1

Solve the equation: .

Solution:

A fraction is equal to 0 if and only if its numerator is equal to 0 and its denominator is not equal to 0.

We get the following system:

The first equation of the system is quadratic equation. Before solving it, let's divide all its coefficients by 3. We get:

We get two roots: ; .

Since 2 never equals 0, two conditions must be met: . Since none of the roots of the equation obtained above coincides with the invalid values ​​of the variable that were obtained when solving the second inequality, they are both solutions given equation.

Answer:.

So, let's formulate an algorithm for solving rational equations:

1. Move all terms to the left side so that the right side ends up with 0.

2. Transform and simplify the left side, bring all fractions to a common denominator.

3. Equate the resulting fraction to 0 using the following algorithm: .

4. Write down those roots that were obtained in the first equation and satisfy the second inequality in the answer.

Let's look at another example.

Example 2

Solve the equation: .

Solution

At the very beginning, let's move all the terms to left side, so that 0 remains on the right. We get:

Now let's bring the left side of the equation to a common denominator:

This equation is equivalent to the system:

The first equation of the system is a quadratic equation.

Coefficients of this equation: . We calculate the discriminant:

We get two roots: ; .

Now let's solve the second inequality: the product of factors is not equal to 0 if and only if none of the factors is equal to 0.

Two conditions must be met: . We find that of the two roots of the first equation, only one is suitable - 3.

Answer:.

In this lesson, we remembered what a rational expression is, and also learned how to solve rational equations, which reduce to quadratic equations.

In the next lesson we will look at rational equations as models of real situations, and also look at motion problems.

Bibliography

  1. Bashmakov M.I. Algebra, 8th grade. - M.: Education, 2004.
  2. Dorofeev G.V., Suvorova S.B., Bunimovich E.A. and others. Algebra, 8. 5th ed. - M.: Education, 2010.
  3. Nikolsky S.M., Potapov M.A., Reshetnikov N.N., Shevkin A.V. Algebra, 8th grade. Tutorial for educational institutions. - M.: Education, 2006.
  1. Festival of Pedagogical Ideas" Public lesson" ().
  2. School.xvatit.com ().
  3. Rudocs.exdat.com ().

Homework

§ 1 Integer and fractional rational equations

In this lesson we will look at concepts such as rational equation, rational expression, whole expression, fractional expression. Let's consider solving rational equations.

A rational equation is an equation in which the left and right sides are rational expressions.

Rational expressions are:

Fractional.

An integer expression is made up of numbers, variables, integer powers using the operations of addition, subtraction, multiplication, and division by a number other than zero.

For example:

Fractional expressions involve division by a variable or an expression with a variable. For example:

A fractional expression does not make sense for all values ​​of the variables included in it. For example, the expression

at x = -9 it does not make sense, since at x = -9 the denominator goes to zero.

This means that a rational equation can be integer or fractional.

A whole rational equation is a rational equation in which the left and right sides are whole expressions.

For example:

A fractional rational equation is a rational equation in which either the left or right sides are fractional expressions.

For example:

§ 2 Solution of an entire rational equation

Let's consider the solution of an entire rational equation.

For example:

Let's multiply both sides of the equation by the least common denominator of the denominators of the fractions included in it.

For this:

1. find the common denominator for denominators 2, 3, 6. It is equal to 6;

2. find an additional factor for each fraction. To do this, divide the common denominator 6 by each denominator

additional factor for fraction

additional factor for fraction

3. multiply the numerators of the fractions by their corresponding additional factors. Thus, we obtain the equation

which is equivalent to the given equation

On the left we will open the brackets, right side Let's move it to the left, changing the sign of the term when moving it to the opposite one.

Let us bring similar terms of the polynomial and get

We see that the equation is linear.

Having solved it, we find that x = 0.5.

§ 3 Solution of a fractional rational equation

Let's consider solving a fractional rational equation.

For example:

1.Multiply both sides of the equation by the least common denominator of the denominators of the rational fractions included in it.

Let's find the common denominator for the denominators x + 7 and x - 1.

It is equal to their product (x + 7)(x - 1).

2. Let's find an additional factor for each rational fraction.

To do this, divide the common denominator (x + 7)(x - 1) by each denominator. Additional factor for fractions

equal to x - 1,

additional factor for fraction

equals x+7.

3.Multiply the numerators of the fractions by their corresponding additional factors.

We obtain the equation (2x - 1)(x - 1) = (3x + 4)(x + 7), which is equivalent to this equation

4.Multiply the binomial by the binomial on the left and right and get the following equation

5. We move the right side to the left, changing the sign of each term when transferring to the opposite:

6. Let us present similar terms of the polynomial:

7. Both sides can be divided by -1. We get a quadratic equation:

8. Having solved it, we will find the roots

Since in Eq.

the left and right sides are fractional expressions, and in fractional expressions, for some values ​​of the variables, the denominator can become zero, then it is necessary to check whether the common denominator does not go to zero when x1 and x2 are found.

At x = -27, the common denominator (x + 7)(x - 1) does not vanish; at x = -1, the common denominator is also not zero.

Therefore, both roots -27 and -1 are roots of the equation.

When solving a fractional rational equation, it is better to immediately indicate the range of acceptable values. Eliminate those values ​​at which the common denominator goes to zero.

Let's consider another example of solving a fractional rational equation.

For example, let's solve the equation

We factor the denominator of the fraction on the right side of the equation

We get the equation

Let's find the common denominator for the denominators (x - 5), x, x(x - 5).

It will be the expression x(x - 5).

Now let's find the range of acceptable values ​​of the equation

To do this, we equate the common denominator to zero x(x - 5) = 0.

We obtain an equation, solving which we find that at x = 0 or at x = 5 the common denominator goes to zero.

This means that x = 0 or x = 5 cannot be the roots of our equation.

Additional multipliers can now be found.

Additional factor for rational fractions

additional factor for the fraction

will be (x - 5),

and the additional factor of the fraction

We multiply the numerators by the corresponding additional factors.

We get the equation x(x - 3) + 1(x - 5) = 1(x + 5).

Let's open the brackets on the left and right, x2 - 3x + x - 5 = x + 5.

Let's move the terms from right to left, changing the sign of the transferred terms:

X2 - 3x + x - 5 - x - 5 = 0

And after bringing similar terms, we obtain a quadratic equation x2 - 3x - 10 = 0. Having solved it, we find the roots x1 = -2; x2 = 5.

But we have already found out that at x = 5 the common denominator x(x - 5) goes to zero. Therefore, the root of our equation

will be x = -2.

§ 4 Brief summary lesson

Important to remember:

When solving fractional rational equations, proceed as follows:

1. Find the common denominator of the fractions included in the equation. Moreover, if the denominators of fractions can be factored, then factor them and then find the common denominator.

2.Multiply both sides of the equation by a common denominator: find additional factors, multiply the numerators by additional factors.

3.Solve the resulting whole equation.

4. Eliminate from its roots those that make the common denominator vanish.

List of used literature:

  1. Makarychev Yu.N., N.G. Mindyuk, Neshkov K.I., Suvorova S.B. / Edited by Telyakovsky S.A. Algebra: textbook. for 8th grade. general education institutions. - M.: Education, 2013.
  2. Mordkovich A.G. Algebra. 8th grade: In two parts. Part 1: Textbook. for general education institutions. - M.: Mnemosyne.
  3. Rurukin A.N. Lesson developments in algebra: 8th grade. - M.: VAKO, 2010.
  4. Algebra 8th grade: lesson plans according to the textbook by Yu.N. Makarycheva, N.G. Mindyuk, K.I. Neshkova, S.B. Suvorova / Auth.-comp. T.L. Afanasyeva, L.A. Tapilina. -Volgograd: Teacher, 2005.

Let's get acquainted with rational and fractional rational equations, give their definition, give examples, and also analyze the most common types of problems.

Yandex.RTB R-A-339285-1

Rational equation: definition and examples

Acquaintance with rational expressions begins in the 8th grade of school. At this time, in algebra lessons, students increasingly begin to encounter assignments with equations that contain rational expressions in their notes. Let's refresh our memory on what it is.

Definition 1

Rational equation is an equation in which both sides contain rational expressions.

In various manuals you can find another formulation.

Definition 2

Rational equation- this is an equation, the left side of which contains a rational expression, and the right side contains zero.

The definitions that we gave for rational equations are equivalent, since they talk about the same thing. The correctness of our words is confirmed by the fact that for any rational expressions P And Q equations P = Q And P − Q = 0 will be equivalent expressions.

Now let's look at the examples.

Example 1

Rational equations:

x = 1 , 2 x − 12 x 2 y z 3 = 0 , x x 2 + 3 x - 1 = 2 + 2 7 x - a (x + 2) , 1 2 + 3 4 - 12 x - 1 = 3 .

Rational equations, just like equations of other types, can contain any number of variables from 1 to several. First we'll look at simple examples, in which the equations will contain only one variable. And then we will begin to gradually complicate the task.

Rational equations are divided into two large groups: integer and fractional. Let's see what equations will apply to each of the groups.

Definition 3

A rational equation will be integer if its left and right sides contain entire rational expressions.

Definition 4

A rational equation will be fractional if one or both of its parts contain a fraction.

Fractional rational equations necessarily contain division by a variable or the variable is present in the denominator. There is no such division in the writing of whole equations.

Example 2

3 x + 2 = 0 And (x + y) · (3 · x 2 − 1) + x = − y + 0, 5– entire rational equations. Here both sides of the equation are represented by integer expressions.

1 x - 1 = x 3 and x: (5 x 3 + y 2) = 3: (x − 1) : 5 are fractionally rational equations.

Whole rational equations include linear and quadratic equations.

Solving whole equations

Solving such equations usually comes down to converting them into equivalent algebraic equations. This can be achieved by carrying out equivalent transformations of equations in accordance with the following algorithm:

  • first we get zero on the right side of the equation; to do this, we need to move the expression that is on the right side of the equation to its left side and change the sign;
  • then we transform the expression on the left side of the equation into a polynomial standard view.

We must obtain an algebraic equation. This equation will be equivalent to the original equation. Easy cases allow us to reduce the whole equation to a linear or quadratic one to solve the problem. IN general case we solve an algebraic equation of degree n.

Example 3

It is necessary to find the roots of the whole equation 3 (x + 1) (x − 3) = x (2 x − 1) − 3.

Solution

Let us transform the original expression in order to obtain an equivalent algebraic equation. To do this, we will transfer the expression contained on the right side of the equation to the left side and replace the sign with the opposite one. As a result we get: 3 (x + 1) (x − 3) − x (2 x − 1) + 3 = 0.

Now let's transform the expression that is on the left side into a standard form polynomial and perform the necessary actions with this polynomial:

3 (x + 1) (x − 3) − x (2 x − 1) + 3 = (3 x + 3) (x − 3) − 2 x 2 + x + 3 = = 3 x 2 − 9 x + 3 x − 9 − 2 x 2 + x + 3 = x 2 − 5 x − 6

We managed to reduce the solution of the original equation to the solution of a quadratic equation of the form x 2 − 5 x − 6 = 0. The discriminant of this equation is positive: D = (− 5) 2 − 4 · 1 · (− 6) = 25 + 24 = 49 . This means, real roots there will be two. Let's find them using the formula for the roots of a quadratic equation:

x = - - 5 ± 49 2 1,

x 1 = 5 + 7 2 or x 2 = 5 - 7 2,

x 1 = 6 or x 2 = - 1

Let's check the correctness of the roots of the equation that we found during the solution. For this, we substitute the numbers we received into the original equation: 3 (6 + 1) (6 − 3) = 6 (2 6 − 1) − 3 And 3 · (− 1 + 1) · (− 1 − 3) = (− 1) · (2 ​​· (− 1) − 1) − 3. In the first case 63 = 63 , in the second 0 = 0 . Roots x=6 And x = − 1 are indeed the roots of the equation given in the example condition.

Answer: 6 , − 1 .

Let's look at what "degree of an entire equation" means. We will often encounter this term in cases where we need to represent an entire equation in algebraic form. Let's define the concept.

Definition 5

Degree of the whole equation- this is the degree algebraic equation, equivalent to the original integer equation.

If you look at the equations from the example above, you can establish: the degree of this whole equation is second.

If our course was limited to solving equations of the second degree, then the discussion of the topic could end there. But it's not that simple. Solving equations of the third degree is fraught with difficulties. And for equations higher than the fourth degree there is no general formulas roots. In this regard, solving entire equations of the third, fourth and other degrees requires us to use a number of other techniques and methods.

The most commonly used approach to solving entire rational equations is based on the factorization method. The algorithm of actions in this case is as follows:

  • we move the expression from the right side to the left so that zero remains on the right side of the record;
  • We represent the expression on the left side as a product of factors, and then move on to a set of several simpler equations.
Example 4

Find the solution to the equation (x 2 − 1) · (x 2 − 10 · x + 13) = 2 · x · (x 2 − 10 · x + 13) .

Solution

We move the expression from the right side of the record to the left with opposite sign: (x 2 − 1) · (x 2 − 10 · x + 13) − 2 · x · (x 2 − 10 · x + 13) = 0. Converting the left-hand side to a polynomial of the standard form is inappropriate due to the fact that this will give us an algebraic equation of the fourth degree: x 4 − 12 x 3 + 32 x 2 − 16 x − 13 = 0. The ease of conversion does not justify all the difficulties in solving such an equation.

It’s much easier to go the other way: let’s take the common factor out of brackets x 2 − 10 x + 13 . So we arrive at an equation of the form (x 2 − 10 x + 13) (x 2 − 2 x − 1) = 0. Now we replace the resulting equation with a set of two quadratic equations x 2 − 10 x + 13 = 0 And x 2 − 2 x − 1 = 0 and find their roots through the discriminant: 5 + 2 3, 5 - 2 3, 1 + 2, 1 - 2.

Answer: 5 + 2 3, 5 - 2 3, 1 + 2, 1 - 2.

In the same way, we can use the method of introducing a new variable. This method allows us to move to equivalent equations with degrees lower than the degrees in the original integer equation.

Example 5

Does the equation have roots? (x 2 + 3 x + 1) 2 + 10 = − 2 (x 2 + 3 x − 4)?

Solution

If we now try to reduce an entire rational equation to an algebraic one, we will get an equation of degree 4 that has no rational roots. Therefore, it will be easier for us to go the other way: introduce a new variable y, which will replace the expression in the equation x 2 + 3 x.

Now we will work with the whole equation (y + 1) 2 + 10 = − 2 · (y − 4). Let's move the right side of the equation to the left with the opposite sign and carry out the necessary transformations. We get: y 2 + 4 y + 3 = 0. Let's find the roots of the quadratic equation: y = − 1 And y = − 3.

Now let's do the reverse replacement. We get two equations x 2 + 3 x = − 1 And x 2 + 3 · x = − 3 . Let's rewrite them as x 2 + 3 x + 1 = 0 and x 2 + 3 x + 3 = 0. We use the formula for the roots of a quadratic equation in order to find the roots of the first equation from those obtained: - 3 ± 5 2. The discriminant of the second equation is negative. This means that the second equation has no real roots.

Answer:- 3 ± 5 2

Whole equations high degrees come across in tasks quite often. There is no need to be afraid of them. You need to be ready to apply non-standard method their solutions, including a number of artificial transformations.

Solving fractional rational equations

We will begin our consideration of this subtopic with an algorithm for solving fractionally rational equations of the form p (x) q (x) = 0, where p(x) And q(x)– whole rational expressions. The solution of other fractionally rational equations can always be reduced to the solution of equations of the indicated type.

The most commonly used method for solving the equations p (x) q (x) = 0 is based on the following statement: numerical fraction u v, Where v- this is a number that is different from zero, equal to zero only in those cases when the numerator of the fraction is equal to zero. Following the logic of the above statement, we can claim that the solution to the equation p (x) q (x) = 0 can be reduced to fulfilling two conditions: p(x)=0 And q(x) ≠ 0. This is the basis for constructing an algorithm for solving fractional rational equations of the form p (x) q (x) = 0:

  • find the solution to the whole rational equation p(x)=0;
  • we check whether the condition is satisfied for the roots found during the solution q(x) ≠ 0.

If this condition is met, then the found root. If not, then the root is not a solution to the problem.

Example 6

Let's find the roots of the equation 3 · x - 2 5 · x 2 - 2 = 0 .

Solution

We are dealing with a fractional rational equation of the form p (x) q (x) = 0, in which p (x) = 3 x − 2, q (x) = 5 x 2 − 2 = 0. Let's start solving the linear equation 3 x − 2 = 0. The root of this equation will be x = 2 3.

Let's check the found root to see if it satisfies the condition 5 x 2 − 2 ≠ 0. To do this, substitute a numerical value into the expression. We get: 5 · 2 3 2 - 2 = 5 · 4 9 - 2 = 20 9 - 2 = 2 9 ≠ 0.

The condition is met. It means that x = 2 3 is the root of the original equation.

Answer: 2 3 .

There is another option for solving fractional rational equations p (x) q (x) = 0. Recall that this equation is equivalent to the whole equation p(x)=0 on the range of permissible values ​​of the variable x of the original equation. This allows us to use the following algorithm in solving the equations p (x) q (x) = 0:

  • solve the equation p(x)=0;
  • find the range of permissible values ​​of the variable x;
  • we take the roots that lie in the range of permissible values ​​of the variable x as the desired roots of the original fractional rational equation.
Example 7

Solve the equation x 2 - 2 x - 11 x 2 + 3 x = 0.

Solution

First, let's solve the quadratic equation x 2 − 2 x − 11 = 0. To calculate its roots, we use the roots formula for the even second coefficient. We get D 1 = (− 1) 2 − 1 · (− 11) = 12, and x = 1 ± 2 3 .

Now we can find the ODZ of variable x for the original equation. These are all the numbers for which x 2 + 3 x ≠ 0. It's the same as x (x + 3) ≠ 0, from where x ≠ 0, x ≠ − 3.

Now let’s check whether the roots x = 1 ± 2 3 obtained at the first stage of the solution are within the range of permissible values ​​of the variable x. We see them coming in. This means that the original fractional rational equation has two roots x = 1 ± 2 3.

Answer: x = 1 ± 2 3

The second solution method described easier than the first in cases where the range of permissible values ​​of the variable x is easily found, and the roots of the equation p(x)=0 irrational. For example, 7 ± 4 · 26 9. The roots can be rational, but with a large numerator or denominator. For example, 127 1101 And − 31 59 . This saves time on checking the condition q(x) ≠ 0: It is much easier to exclude roots that are not suitable according to the ODZ.

In cases where the roots of the equation p(x)=0 are integers, it is more expedient to use the first of the described algorithms for solving equations of the form p (x) q (x) = 0. Find the roots of an entire equation faster p(x)=0, and then check whether the condition is satisfied for them q(x) ≠ 0, rather than finding the ODZ, and then solving the equation p(x)=0 on this ODZ. This is due to the fact that in such cases it is usually easier to check than to find DZ.

Example 8

Find the roots of the equation (2 x - 1) (x - 6) (x 2 - 5 x + 14) (x + 1) x 5 - 15 x 4 + 57 x 3 - 13 x 2 + 26 x + 112 = 0.

Solution

Let's start by looking at the whole equation (2 x − 1) (x − 6) (x 2 − 5 x + 14) (x + 1) = 0 and finding its roots. To do this, we apply the method of solving equations through factorization. It turns out that the original equation is equivalent to a set of four equations 2 x − 1 = 0, x − 6 = 0, x 2 − 5 x + 14 = 0, x + 1 = 0, of which three are linear and one is quadratic. Finding roots: from the first equation x = 1 2, from the second – x=6, from the third – x = 7 , x = − 2 , from the fourth – x = − 1.

Let's check the obtained roots. Determine ADL in in this case It’s difficult for us, since for this we will have to solve an algebraic equation of the fifth degree. It will be easier to check the condition according to which the denominator of the fraction, which is on the left side of the equation, should not go to zero.

Let’s take turns substituting the roots for the variable x in the expression x 5 − 15 x 4 + 57 x 3 − 13 x 2 + 26 x + 112 and calculate its value:

1 2 5 − 15 1 2 4 + 57 1 2 3 − 13 1 2 2 + 26 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ;

6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ;

7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ;

(− 2) 5 − 15 · (− 2) 4 + 57 · (− 2) 3 − 13 · (− 2) 2 + 26 · (− 2) + 112 = − 720 ≠ 0 ;

(− 1) 5 − 15 · (− 1) 4 + 57 · (− 1) 3 − 13 · (− 1) 2 + 26 · (− 1) + 112 = 0 .

The verification carried out allows us to establish that the roots of the original fractional rational equation are 1 2, 6 and − 2 .

Answer: 1 2 , 6 , - 2

Example 9

Find the roots of the fractional rational equation 5 x 2 - 7 x - 1 x - 2 x 2 + 5 x - 14 = 0.

Solution

Let's start working with the equation (5 x 2 − 7 x − 1) (x − 2) = 0. Let's find its roots. It’s easier for us to imagine this equation as a combination of quadratic and linear equations 5 x 2 − 7 x − 1 = 0 And x − 2 = 0.

We use the formula for the roots of a quadratic equation to find the roots. We obtain from the first equation two roots x = 7 ± 69 10, and from the second x = 2.

It will be quite difficult for us to substitute the value of the roots into the original equation to check the conditions. It will be easier to determine the ODZ of the variable x. In this case, the ODZ of the variable x is all numbers except those for which the condition is met x 2 + 5 x − 14 = 0. We get: x ∈ - ∞, - 7 ∪ - 7, 2 ∪ 2, + ∞.

Now let's check whether the roots we found belong to the range of permissible values ​​of the variable x.

The roots x = 7 ± 69 10 - belong, therefore, they are the roots of the original equation, and x = 2- does not belong, therefore, it is an extraneous root.

Answer: x = 7 ± 69 10 .

Let us examine separately the cases when the numerator of a fractional rational equation of the form p (x) q (x) = 0 contains a number. In such cases, if the numerator contains a number other than zero, then the equation will have no roots. If this number is equal to zero, then the root of the equation will be any number from the ODZ.

Example 10

Solve the fractional rational equation - 3, 2 x 3 + 27 = 0.

Solution

This equation will not have roots, since the numerator of the fraction on the left side of the equation contains a non-zero number. This means that at no value of x will the value of the fraction given in the problem statement be equal to zero.

Answer: no roots.

Example 11

Solve the equation 0 x 4 + 5 x 3 = 0.

Solution

Since the numerator of the fraction contains zero, the solution to the equation will be any value x from the ODZ of the variable x.

Now let's define the ODZ. It will include all values ​​of x for which x 4 + 5 x 3 ≠ 0. Solutions to the equation x 4 + 5 x 3 = 0 are 0 And − 5 , since this equation is equivalent to the equation x 3 (x + 5) = 0, and this in turn is equivalent to the combination of two equations x 3 = 0 and x + 5 = 0, where these roots are visible. We come to the conclusion that the desired range of acceptable values ​​are any x except x = 0 And x = − 5.

It turns out that the fractional rational equation 0 x 4 + 5 x 3 = 0 has an infinite number of solutions, which are any numbers other than zero and - 5.

Answer: - ∞ , - 5 ∪ (- 5 , 0 ∪ 0 , + ∞

Now let's talk about fractional rational equations of arbitrary form and methods for solving them. They can be written as r(x) = s(x), Where r(x) And s(x)– rational expressions, and at least one of them is fractional. Solving such equations reduces to solving equations of the form p (x) q (x) = 0.

We already know that we can obtain an equivalent equation by transferring an expression from the right side of the equation to the left with the opposite sign. This means that the equation r(x) = s(x) is equivalent to the equation r (x) − s (x) = 0. We have also already discussed ways to convert a rational expression into a rational fraction. Thanks to this, we can easily transform the equation r (x) − s (x) = 0 into an identical rational fraction of the form p (x) q (x) .

So we move from the original fractional rational equation r(x) = s(x) to an equation of the form p (x) q (x) = 0, which we have already learned to solve.

It should be taken into account that when making transitions from r (x) − s (x) = 0 to p(x)q(x) = 0 and then to p(x)=0 we may not take into account the expansion of the range of permissible values ​​of the variable x.

It is quite possible that the original equation r(x) = s(x) and equation p(x)=0 as a result of the transformations they will cease to be equivalent. Then the solution to the equation p(x)=0 can give us roots that will be foreign to r(x) = s(x). In this regard, in each case it is necessary to carry out verification using any of the methods described above.

To make it easier for you to study the topic, we have summarized all the information into an algorithm for solving a fractional rational equation of the form r(x) = s(x):

  • we transfer the expression from the right side with the opposite sign and get zero on the right;
  • transform the original expression into a rational fraction p (x) q (x) , sequentially performing operations with fractions and polynomials;
  • solve the equation p(x)=0;
  • We identify extraneous roots by checking their belonging to the ODZ or by substitution into the original equation.

Visually, the chain of actions will look like this:

r (x) = s (x) → r (x) - s (x) = 0 → p (x) q (x) = 0 → p (x) = 0 → elimination EXTERNAL ROOTS

Example 12

Solve the fractional rational equation x x + 1 = 1 x + 1 .

Solution

Let's move on to the equation x x + 1 - 1 x + 1 = 0. Let's transform the fractional rational expression on the left side of the equation to the form p (x) q (x) .

To do this, we will have to reduce rational fractions to a common denominator and simplify the expression:

x x + 1 - 1 x - 1 = x x - 1 (x + 1) - 1 x (x + 1) x (x + 1) = = x 2 - x - 1 - x 2 - x x · (x + 1) = - 2 · x - 1 x · (x + 1)

In order to find the roots of the equation - 2 x - 1 x (x + 1) = 0, we need to solve the equation − 2 x − 1 = 0. We get one root x = - 1 2.

All we have to do is check using any of the methods. Let's look at both of them.

Let's substitute the resulting value into the original equation. We get - 1 2 - 1 2 + 1 = 1 - 1 2 + 1. We have arrived at the correct numerical equality − 1 = − 1 . It means that x = − 1 2 is the root of the original equation.

Now let's check through the ODZ. Let us determine the range of permissible values ​​of the variable x. This will be the entire set of numbers, with the exception of − 1 and 0 (at x = − 1 and x = 0, the denominators of the fractions vanish). The root we obtained x = − 1 2 belongs to ODZ. This means that it is the root of the original equation.

Answer: − 1 2 .

Example 13

Find the roots of the equation x 1 x + 3 - 1 x = - 2 3 · x.

Solution

We are dealing with a fractional rational equation. Therefore, we will act according to the algorithm.

Let's move the expression from the right side to the left with the opposite sign: x 1 x + 3 - 1 x + 2 3 x = 0

Let's carry out the necessary transformations: x 1 x + 3 - 1 x + 2 3 · x = x 3 + 2 · x 3 = 3 · x 3 = x.

We arrive at the equation x = 0. The root of this equation is zero.

Let's check whether this root is extraneous to the original equation. Let's substitute the value into the original equation: 0 1 0 + 3 - 1 0 = - 2 3 · 0. As you can see, the resulting equation makes no sense. This means that 0 is an extraneous root, and the original fractional rational equation has no roots.

Answer: no roots.

If we have not included other equivalent transformations in the algorithm, this does not mean that they cannot be used. The algorithm is universal, but it is designed to help, not limit.

Example 14

Solve the equation 7 + 1 3 + 1 2 + 1 5 - x 2 = 7 7 24

Solution

The easiest way is to solve the given fractional rational equation according to the algorithm. But there is another way. Let's consider it.

Subtract 7 from the right and left sides, we get: 1 3 + 1 2 + 1 5 - x 2 = 7 24.

From this we can conclude that the expression in the denominator of the left side must be equal to the number reciprocal number from the right side, that is, 3 + 1 2 + 1 5 - x 2 = 24 7.

Subtract 3 from both sides: 1 2 + 1 5 - x 2 = 3 7. By analogy, 2 + 1 5 - x 2 = 7 3, from where 1 5 - x 2 = 1 3, and then 5 - x 2 = 3, x 2 = 2, x = ± 2

Let us carry out a check to determine whether the roots found are the roots of the original equation.

Answer: x = ± 2

If you notice an error in the text, please highlight it and press Ctrl+Enter

We have already learned how to solve quadratic equations. Now let's extend the studied methods to rational equations.

What is a rational expression? We have already encountered this concept. Rational expressions are expressions made up of numbers, variables, their powers and symbols of mathematical operations.

Accordingly, rational equations are equations of the form: , where - rational expressions.

Previously, we considered only those rational equations that can be reduced to linear ones. Now let's look at those rational equations that can be reduced to quadratic equations.

Example 1

Solve the equation: .

Solution:

A fraction is equal to 0 if and only if its numerator is equal to 0 and its denominator is not equal to 0.

We get the following system:

The first equation of the system is a quadratic equation. Before solving it, let's divide all its coefficients by 3. We get:

We get two roots: ; .

Since 2 never equals 0, two conditions must be met: . Since none of the roots of the equation obtained above coincides with the invalid values ​​of the variable that were obtained when solving the second inequality, they are both solutions to this equation.

Answer:.

So, let's formulate an algorithm for solving rational equations:

1. Move all terms to the left side so that the right side ends up with 0.

2. Transform and simplify the left side, bring all fractions to a common denominator.

3. Equate the resulting fraction to 0 using the following algorithm: .

4. Write down those roots that were obtained in the first equation and satisfy the second inequality in the answer.

Let's look at another example.

Example 2

Solve the equation: .

Solution

At the very beginning, we move all the terms to the left so that 0 remains on the right. We get:

Now let's bring the left side of the equation to a common denominator:

This equation is equivalent to the system:

The first equation of the system is a quadratic equation.

Coefficients of this equation: . We calculate the discriminant:

We get two roots: ; .

Now let's solve the second inequality: the product of factors is not equal to 0 if and only if none of the factors is equal to 0.

Two conditions must be met: . We find that of the two roots of the first equation, only one is suitable - 3.

Answer:.

In this lesson, we remembered what a rational expression is, and also learned how to solve rational equations, which reduce to quadratic equations.

In the next lesson we will look at rational equations as models of real situations, and also look at motion problems.

Bibliography

  1. Bashmakov M.I. Algebra, 8th grade. - M.: Education, 2004.
  2. Dorofeev G.V., Suvorova S.B., Bunimovich E.A. and others. Algebra, 8. 5th ed. - M.: Education, 2010.
  3. Nikolsky S.M., Potapov M.A., Reshetnikov N.N., Shevkin A.V. Algebra, 8th grade. Textbook for general education institutions. - M.: Education, 2006.
  1. Festival of pedagogical ideas "Open Lesson" ().
  2. School.xvatit.com ().
  3. Rudocs.exdat.com ().

Homework

Solving equations with fractions Let's look at examples. The examples are simple and illustrative. With their help, you will be able to understand in the most understandable way.
For example, you need to solve the simple equation x/b + c = d.

An equation of this type is called linear, because The denominator contains only numbers.

The solution is performed by multiplying both sides of the equation by b, then the equation takes the form x = b*(d – c), i.e. the denominator of the fraction on the left side cancels.

For example, how to solve a fractional equation:
x/5+4=9
We multiply both sides by 5. We get:
x+20=45
x=45-20=25

Another example when the unknown is in the denominator:

Equations of this type are called fractional-rational or simply fractional.

We would solve a fractional equation by getting rid of fractions, after which this equation, most often, turns into a linear or quadratic equation, which is solved in the usual way. You just need to consider the following points:

  • the value of a variable that turns the denominator to 0 cannot be a root;
  • You cannot divide or multiply an equation by the expression =0.

This is where the concept of the region of permissible values ​​(ADV) comes into force - these are the values ​​of the roots of the equation for which the equation makes sense.

Thus, when solving the equation, it is necessary to find the roots, and then check them for compliance with the ODZ. Those roots that do not correspond to our ODZ are excluded from the answer.

For example, you need to solve a fractional equation:

Based on the above rule, x cannot be = 0, i.e. ODZ in this case: x – any value other than zero.

We get rid of the denominator by multiplying all terms of the equation by x

And we solve the usual equation

5x – 2x = 1
3x = 1
x = 1/3

Answer: x = 1/3

Let's solve a more complicated equation:

ODZ is also present here: x -2.

When solving this equation, we will not move everything to one side and bring the fractions to a common denominator. We will immediately multiply both sides of the equation by an expression that will cancel out all the denominators at once.

To reduce the denominators, you need to multiply the left side by x+2, and the right side by 2. This means that both sides of the equation must be multiplied by 2(x+2):

This is the most common multiplication of fractions, which we have already discussed above.

Let's write the same equation, but slightly differently

The left side is reduced by (x+2), and the right by 2. After the reduction, we obtain the usual linear equation:

x = 4 – 2 = 2, which corresponds to our ODZ

Answer: x = 2.

Solving equations with fractions not as difficult as it might seem. In this article we have shown this with examples. If you have any difficulties with how to solve equations with fractions, then unsubscribe in the comments.

Views