How to find the value of an expression with negative powers. Negative power of a number: construction rules and examples


In this article we will figure out what it is degree of. Here we will give definitions of the power of a number, while we will consider in detail all possible exponents, starting with the natural exponent and ending with the irrational one. In the material you will find a lot of examples of degrees, covering all the subtleties that arise.

Page navigation.

Power with natural exponent, square of a number, cube of a number

Let's start with . Looking ahead, let's say that the definition of the power of a number a with natural exponent n is given for a, which we will call degree basis, and n, which we will call exponent. We also note that a degree with a natural exponent is determined through a product, so to understand the material below you need to have an understanding of multiplying numbers.

Definition.

Power of a number with natural exponent n is an expression of the form a n, the value of which is equal to the product of n factors, each of which is equal to a, that is, .
In particular, the power of a number a with exponent 1 is the number a itself, that is, a 1 =a.

It’s worth mentioning right away about the rules for reading degrees. The universal way to read the notation a n is: “a to the power of n”. In some cases, the following options are also acceptable: “a to the nth power” and “nth power of a”. For example, let's take the power 8 12, this is “eight to the power of twelve”, or “eight to the twelfth power”, or “twelfth power of eight”.

The second power of a number, as well as the third power of a number, have their own names. The second power of a number is called square the number, for example, 7 2 is read as “seven squared” or “the square of the number seven.” The third power of a number is called cubed numbers, for example, 5 3 can be read as “five cubed” or you can say “cube of the number 5”.

It's time to bring examples of degrees with natural exponents. Let's start with the degree 5 7, here 5 is the base of the degree, and 7 is the exponent. Let's give another example: 4.32 is the base, and natural number 9 – exponent (4.32) 9 .

Please note that in the last example, the base of the power 4.32 is written in parentheses: to avoid discrepancies, we will put in parentheses all bases of the power that are different from natural numbers. As an example, we give the following degrees with natural exponents , their bases are not natural numbers, so they are written in parentheses. Well, for complete clarity, at this point we will show the difference contained in records of the form (−2) 3 and −2 3. The expression (−2) 3 is a power of −2 with a natural exponent of 3, and the expression −2 3 (it can be written as −(2 3) ) corresponds to the number, the value of the power 2 3 .

Note that there is a notation for the power of a number a with an exponent n of the form a^n. Moreover, if n is a multi-valued natural number, then the exponent is taken in brackets. For example, 4^9 is another notation for the power of 4 9 . And here are some more examples of writing degrees using the symbol “^”: 14^(21) , (−2,1)^(155) . In what follows, we will primarily use degree notation of the form a n .

One of the problems inverse to raising to a power with a natural exponent is the problem of finding the base of the power by known value degree and known indicator. This task leads to .

It is known that many rational numbers consists of whole and fractional numbers, each a fractional number can be represented as positive or negative common fraction. We defined a degree with an integer exponent in the previous paragraph, therefore, in order to complete the definition of a degree with a rational exponent, we need to give meaning to the degree of the number a with a fractional exponent m/n, where m is an integer and n is a natural number. Let's do it.

Let's consider a degree with a fractional exponent of the form . For the power-to-power property to remain valid, the equality must hold . If we take into account the resulting equality and how we determined , then it is logical to accept it provided that for given m, n and a the expression makes sense.

It is easy to check that for all properties of a degree with an integer exponent are valid (this was done in the section properties of a degree with a rational exponent).

The above reasoning allows us to make the following conclusion: if given m, n and a the expression makes sense, then the power of a with a fractional exponent m/n is called the nth root of a to the power of m.

This statement brings us close to the definition of a degree with a fractional exponent. All that remains is to describe at what m, n and a the expression makes sense. Depending on the restrictions placed on m, n and a, there are two main approaches.

    The easiest way is to impose a constraint on a by taking a≥0 for positive m and a>0 for negative m (since for m≤0 the degree 0 of m is not defined). Then we get the following definition of a degree with a fractional exponent.

    Definition.

    Power of a positive number a with fractional exponent m/n, where m is an integer and n is a natural number, is called the nth root of the number a to the power m, that is, .

    The fractional power of zero is also determined with the only caveat that the indicator must be positive.

    Definition.

    Power of zero with fractional positive exponent m/n, where m is a positive integer and n is a natural number, is defined as .
    When the degree is not determined, that is, the degree of the number zero with a fraction negative indicator doesn't make sense.

    It should be noted that with this definition of a degree with a fractional exponent, there is one caveat: for some negative a and some m and n, the expression makes sense, and we discarded these cases by introducing the condition a≥0. For example, the entries make sense or , and the definition given above forces us to say that powers with a fractional exponent of the form do not make sense, since the base should not be negative.

    Another approach to determining a degree with a fractional exponent m/n is to separately consider even and odd exponents of the root. This approach requires an additional condition: the power of the number a, the exponent of which is , is considered to be the power of the number a, the exponent of which is the corresponding irreducible fraction (we will explain the importance of this condition below). That is, if m/n is an irreducible fraction, then for any natural number k the degree is first replaced by .

    For even n and positive m, the expression makes sense for any non-negative a (even root of negative number does not make sense), for negative m the number a must still be different from zero (otherwise there will be division by zero). And for odd n and positive m, the number a can be any (the root of an odd degree is defined for any real number), and for negative m, the number a must be different from zero (so that there is no division by zero).

    The above reasoning leads us to this definition of a degree with a fractional exponent.

    Definition.

    Let m/n be an irreducible fraction, m an integer, and n a natural number. For any reducible fraction, the degree is replaced by . The power of a number with an irreducible fractional exponent m/n is for

    Let us explain why a degree with a reducible fractional exponent is first replaced by a degree with an irreducible exponent. If we simply defined the degree as , and did not make a reservation about the irreducibility of the fraction m/n, then we would be faced with situations similar to the following: since 6/10 = 3/5, then the equality must hold , But , A .

The power is used to simplify the operation of multiplying a number by itself. For example, instead of writing, you can write 4 5 (\displaystyle 4^(5))(an explanation for this transition is given in the first section of this article). Degrees make it easier to write long or complex expressions or equations; powers are also easy to add and subtract, resulting in a simplified expression or equation (for example, 4 2 ∗ 4 3 = 4 5 (\displaystyle 4^(2)*4^(3)=4^(5))).


Note: if you need to decide exponential equation(in such an equation the unknown is in the exponent), read.

Steps

Solving simple problems with degrees

    Multiply the base of the exponent by itself a number of times equal to the exponent. If you need to solve a power problem by hand, rewrite the power as a multiplication operation, where the base of the power is multiplied by itself. For example, given a degree 3 4 (\displaystyle 3^(4)). In this case, the base of power 3 must be multiplied by itself 4 times: 3 ∗ 3 ∗ 3 ∗ 3 (\displaystyle 3*3*3*3). Here are other examples:

    First, multiply the first two numbers. For example, 4 5 (\displaystyle 4^(5)) = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 (\displaystyle 4*4*4*4*4). Don't worry - the calculation process is not as complicated as it seems at first glance. First multiply the first two fours and then replace them with the result. Like this:

    • 4 5 = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 (\displaystyle 4^(5)=4*4*4*4*4)
      • 4 ∗ 4 = 16 (\displaystyle 4*4=16)
  1. Multiply the result (16 in our example) by the next number. Each subsequent result will increase proportionally. In our example, multiply 16 by 4. Like this:

    • 4 5 = 16 ∗ 4 ∗ 4 ∗ 4 (\displaystyle 4^(5)=16*4*4*4)
      • 16 ∗ 4 = 64 (\displaystyle 16*4=64)
    • 4 5 = 64 ∗ 4 ∗ 4 (\displaystyle 4^(5)=64*4*4)
      • 64 ∗ 4 = 256 (\displaystyle 64*4=256)
    • 4 5 = 256 ∗ 4 (\displaystyle 4^(5)=256*4)
      • 256 ∗ 4 = 1024 (\displaystyle 256*4=1024)
    • Continue multiplying the result of the first two numbers by the next number until you get your final answer. To do this, multiply the first two numbers, and then multiply the resulting result by the next number in the sequence. This method is valid for any degree. In our example you should get: 4 5 = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 = 1024 (\displaystyle 4^(5)=4*4*4*4*4=1024) .
  2. Solve the following problems. Check your answer using a calculator.

    • 8 2 (\displaystyle 8^(2))
    • 3 4 (\displaystyle 3^(4))
    • 10 7 (\displaystyle 10^(7))
  3. On your calculator, look for the key labeled "exp" or " x n (\displaystyle x^(n))", or "^". Using this key you will raise a number to a power. It is almost impossible to calculate a degree with a large indicator manually (for example, the degree 9 15 (\displaystyle 9^(15))), but the calculator can easily cope with this task. In Windows 7, the standard calculator can be switched to engineering mode; To do this, click “View” -> “Engineering”. To switch to normal mode, click “View” -> “Normal”.

    • Check your answer using search engine(Google or Yandex). Using the "^" key on your computer keyboard, enter the expression into the search engine, which will instantly display the correct answer (and possibly suggest similar expressions for you to study).

    Addition, subtraction, multiplication of powers

    1. You can add and subtract degrees only if they have the same bases. If you need to add powers with the same bases and exponents, then you can replace the addition operation with the multiplication operation. For example, given the expression 4 5 + 4 5 (\displaystyle 4^(5)+4^(5)). Remember that the degree 4 5 (\displaystyle 4^(5)) can be represented in the form 1 ∗ 4 5 (\displaystyle 1*4^(5)); Thus, 4 5 + 4 5 = 1 ∗ 4 5 + 1 ∗ 4 5 = 2 ∗ 4 5 (\displaystyle 4^(5)+4^(5)=1*4^(5)+1*4^(5) =2*4^(5))(where 1 +1 =2). That is, count the number of similar degrees, and then multiply that degree and this number. In our example, raise 4 to the fifth power, and then multiply the resulting result by 2. Remember that the addition operation can be replaced by the multiplication operation, for example, 3 + 3 = 2 ∗ 3 (\displaystyle 3+3=2*3). Here are other examples:

      • 3 2 + 3 2 = 2 ∗ 3 2 (\displaystyle 3^(2)+3^(2)=2*3^(2))
      • 4 5 + 4 5 + 4 5 = 3 ∗ 4 5 (\displaystyle 4^(5)+4^(5)+4^(5)=3*4^(5))
      • 4 5 − 4 5 + 2 = 2 (\displaystyle 4^(5)-4^(5)+2=2)
      • 4 x 2 − 2 x 2 = 2 x 2 (\displaystyle 4x^(2)-2x^(2)=2x^(2))
    2. When multiplying powers with the same base, their exponents are added (the base does not change). For example, given the expression x 2 ∗ x 5 (\displaystyle x^(2)*x^(5)). In this case, you just need to add the indicators, leaving the base unchanged. Thus, x 2 ∗ x 5 = x 7 (\displaystyle x^(2)*x^(5)=x^(7)). Here is a visual explanation of this rule:

      When raising a power to a power, the exponents are multiplied. For example, a degree is given. Since exponents are multiplied, then (x 2) 5 = x 2 ∗ 5 = x 10 (\displaystyle (x^(2))^(5)=x^(2*5)=x^(10)). The point of this rule is that you multiply by powers (x 2) (\displaystyle (x^(2))) on itself five times. Like this:

      • (x 2) 5 (\displaystyle (x^(2))^(5))
      • (x 2) 5 = x 2 ∗ x 2 ∗ x 2 ∗ x 2 ∗ x 2 (\displaystyle (x^(2))^(5)=x^(2)*x^(2)*x^( 2)*x^(2)*x^(2))
      • Since the base is the same, the exponents simply add up: (x 2) 5 = x 2 ∗ x 2 ∗ x 2 ∗ x 2 ∗ x 2 = x 10 (\displaystyle (x^(2))^(5)=x^(2)*x^(2)* x^(2)*x^(2)*x^(2)=x^(10))
    3. A power with a negative exponent should be converted to a fraction (reverse power). It doesn't matter if you don't know what a reciprocal degree is. If you are given a degree with a negative exponent, e.g. 3 − 2 (\displaystyle 3^(-2)), write this degree in the denominator of the fraction (put 1 in the numerator), and make the exponent positive. In our example: 1 3 2 (\displaystyle (\frac (1)(3^(2)))). Here are other examples:

      When dividing degrees with the same base, their exponents are subtracted (the base does not change). The division operation is the opposite of the multiplication operation. For example, given the expression 4 4 4 2 (\displaystyle (\frac (4^(4))(4^(2)))). Subtract the exponent in the denominator from the exponent in the numerator (do not change the base). Thus, 4 4 4 2 = 4 4 − 2 = 4 2 (\displaystyle (\frac (4^(4))(4^(2)))=4^(4-2)=4^(2)) = 16 .

      • The power in the denominator can be written as follows: 1 4 2 (\displaystyle (\frac (1)(4^(2)))) = 4 − 2 (\displaystyle 4^(-2)). Remember that a fraction is a number (power, expression) with a negative exponent.
    4. Below are some expressions that will help you learn to solve problems with exponents. The expressions given cover the material presented in this section. To see the answer, simply select the empty space after the equals sign.

    Solving problems with fractional exponents

      A power with a fractional exponent (for example, ) is converted to a root operation. In our example: x 1 2 (\displaystyle x^(\frac (1)(2))) = x (\displaystyle (\sqrt (x))). Here it does not matter what number is in the denominator of the fractional exponent. For example, x 1 4 (\displaystyle x^(\frac (1)(4)))- is the fourth root of “x”, that is x 4 (\displaystyle (\sqrt[(4)](x))) .

    1. If the exponent is improper fraction, then such a degree can be decomposed into two degrees to simplify the solution of the problem. There is nothing complicated about this - just remember the rule of multiplying powers. For example, a degree is given. Convert such a power into a root whose power is equal to the denominator of the fractional exponent, and then raise this root to a power equal to the numerator of the fractional exponent. To do this, remember that 5 3 (\displaystyle (\frac (5)(3))) = (1 3) ∗ 5 (\displaystyle ((\frac (1)(3)))*5). In our example:

      • x 5 3 (\displaystyle x^(\frac (5)(3)))
      • x 1 3 = x 3 (\displaystyle x^(\frac (1)(3))=(\sqrt[(3)](x)))
      • x 5 3 = x 5 ∗ x 1 3 (\displaystyle x^(\frac (5)(3))=x^(5)*x^(\frac (1)(3))) = (x 3) 5 (\displaystyle ((\sqrt[(3)](x)))^(5))
    2. Some calculators have a button to calculate exponents (you must first enter the base, then press the button, and then enter the exponent). It is denoted as ^ or x^y.
    3. Remember that any number to the first power is equal to itself, for example, 4 1 = 4. (\displaystyle 4^(1)=4.) Moreover, any number multiplied or divided by one is equal to itself, e.g. 5 ∗ 1 = 5 (\displaystyle 5*1=5) And 5 / 1 = 5 (\displaystyle 5/1=5).
    4. Know that the power 0 0 does not exist (such a power has no solution). If you try to solve such a degree on a calculator or on a computer, you will receive an error. But remember that any number to the zero power is 1, for example, 4 0 = 1. (\displaystyle 4^(0)=1.)
    5. IN higher mathematics, which operates with imaginary numbers: e a i x = c o s a x + i s i n a x (\displaystyle e^(a)ix=cosax+isinax), Where i = (− 1) (\displaystyle i=(\sqrt (())-1)); e is a constant approximately equal to 2.7; a is an arbitrary constant. The proof of this equality can be found in any textbook on higher mathematics.
    6. Warnings

    • As the exponent increases, its value increases greatly. So if the answer seems wrong to you, it may actually be correct. You can check this by plotting any exponential function eg 2 x .

Degree formulas used in the process of reducing and simplifying complex expressions, in solving equations and inequalities.

Number c is n-th power of a number a When:

Operations with degrees.

1. By multiplying degrees with the same base, their indicators are added:

a m·a n = a m + n .

2. When dividing degrees with the same base, their exponents are subtracted:

3. The degree of the product of 2 or more factors is equal to the product of the degrees of these factors:

(abc…) n = a n · b n · c n …

4. The degree of a fraction is equal to the ratio of the degrees of the dividend and the divisor:

(a/b) n = a n /b n .

5. Raising a power to a power, the exponents are multiplied:

(a m) n = a m n .

Each formula above is true in the directions from left to right and vice versa.

For example. (2 3 5/15)² = 2² 3² 5²/15² = 900/225 = 4.

Operations with roots.

1. The root of the product of several factors is equal to the product of the roots of these factors:

2. The root of a ratio is equal to the ratio of the dividend and the divisor of the roots:

3. When raising a root to a power, it is enough to raise the radical number to this power:

4. If you increase the degree of the root in n once and at the same time build into n th power is a radical number, then the value of the root will not change:

5. If you reduce the degree of the root in n extract the root at the same time n-th power of a radical number, then the value of the root will not change:

A degree with a negative exponent. The power of a certain number with a non-positive (integer) exponent is defined as one divided by the power of the same number with an exponent equal to the absolute value of the non-positive exponent:

Formula a m:a n =a m - n can be used not only for m> n, but also with m< n.

For example. a4:a 7 = a 4 - 7 = a -3.

To formula a m:a n =a m - n became fair when m=n, the presence of zero degree is required.

A degree with a zero index. The power of any number not equal to zero with a zero exponent is equal to one.

For example. 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.

Degree with a fractional exponent. To raise a real number A to the degree m/n, you need to extract the root n th degree of m-th power of this number A.


Continuing the conversation about the power of a number, it is logical to figure out how to find the value of the power. This process is called exponentiation. In this article we will study how exponentiation is performed, while we will touch on all possible exponents - natural, integer, rational and irrational. And according to tradition, we will consider in detail solutions to examples of raising numbers to various powers.

Page navigation.

What does "exponentiation" mean?

Let's start by explaining what is called exponentiation. Here is the relevant definition.

Definition.

Exponentiation- this is finding the value of the power of a number.

Thus, finding the value of the power of a number a with exponent r and raising the number a to the power r are the same thing. For example, if the task is “calculate the value of the power (0.5) 5,” then it can be reformulated as follows: “Raise the number 0.5 to the power 5.”

Now you can go directly to the rules by which exponentiation is performed.

Raising a number to a natural power

In practice, equality based on is usually applied in the form . That is, when raising a number a to a fractional power m/n, first the nth root of the number a is taken, after which the resulting result is raised to an integer power m.

Let's look at solutions to examples of raising to a fractional power.

Example.

Calculate the value of the degree.

Solution.

We will show two solutions.

First way. By definition of a degree with a fractional exponent. We calculate the value of the degree under the root sign, and then extract the cube root: .

Second way. By the definition of a degree with a fractional exponent and based on the properties of the roots, the following equalities are true: . Now we extract the root , finally, we raise it to an integer power .

Obviously, the obtained results of raising to a fractional power coincide.

Answer:

Note that the fractional exponent can be written as decimal or mixed number, in these cases it should be replaced by the corresponding ordinary fraction, and then raised to a power.

Example.

Calculate (44.89) 2.5.

Solution.

Let's write the exponent in the form of an ordinary fraction (if necessary, see the article): . Now we perform the raising to a fractional power:

Answer:

(44,89) 2,5 =13 501,25107 .

It should also be said that raising numbers to rational powers is a rather labor-intensive process (especially when the numerator and denominator of the fractional exponent contain quite a few big numbers), which is usually carried out using computer technology.

To conclude this point, let us dwell on raising the number zero to a fractional power. We gave the following meaning to the fractional power of zero of the form: when we have , and at zero to the m/n power is not defined. So, zero to a fractional positive power is zero, for example, . And zero in a fractional negative power does not make sense, for example, the expressions 0 -4.3 do not make sense.

Raising to an irrational power

Sometimes it becomes necessary to find out the value of the power of a number with an irrational exponent. In this case, for practical purposes it is usually sufficient to obtain the value of the degree accurate to a certain sign. Let us immediately note that in practice this value is calculated using electronic computers, since raising it to an irrational power manually requires large quantity cumbersome calculations. But still we will describe in general outline the essence of the action.

To obtain an approximate value of the power of a number a with an irrational exponent, some decimal approximation of the exponent is taken and the value of the power is calculated. This value is an approximate value of the power of the number a with an irrational exponent. The more accurate the decimal approximation of a number is taken initially, the more exact value degree will be obtained in the end.

As an example, let's calculate the approximate value of the power of 2 1.174367... . Let's take the following decimal approximation of the irrational exponent: . Now we raise 2 to the rational power 1.17 (we described the essence of this process in the previous paragraph), we get 2 1.17 ≈2.250116. Thus, 2 1,174367... ≈2 1,17 ≈2,250116 . If we take a more accurate decimal approximation of the irrational exponent, for example, then we obtain a more accurate value of the original exponent: 2 1,174367... ≈2 1,1743 ≈2,256833 .

Bibliography.

  • Vilenkin N.Ya., Zhokhov V.I., Chesnokov A.S., Shvartsburd S.I. Mathematics textbook for 5th grade. educational institutions.
  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebra: textbook for 7th grade. educational institutions.
  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebra: textbook for 8th grade. educational institutions.
  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebra: textbook for 9th grade. educational institutions.
  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. and others. Algebra and the beginnings of analysis: Textbook for grades 10 - 11 of general education institutions.
  • Gusev V.A., Mordkovich A.G. Mathematics (a manual for those entering technical schools).

It is obvious that numbers with powers can be added like other quantities , by adding them one after another with their signs.

So, the sum of a 3 and b 2 is a 3 + b 2.
The sum of a 3 - b n and h 5 -d 4 is a 3 - b n + h 5 - d 4.

Odds equal degrees identical variables can be added or subtracted.

So, the sum of 2a 2 and 3a 2 is equal to 5a 2.

It is also obvious that if you take two squares a, or three squares a, or five squares a.

But degrees various variables And various degrees identical variables, must be composed by adding them with their signs.

So, the sum of a 2 and a 3 is the sum of a 2 + a 3.

It is obvious that the square of a, and the cube of a, is not equal to twice the square of a, but to twice the cube of a.

The sum of a 3 b n and 3a 5 b 6 is a 3 b n + 3a 5 b 6.

Subtraction powers are carried out in the same way as addition, except that the signs of the subtrahends must be changed accordingly.

Or:
2a 4 - (-6a 4) = 8a 4
3h 2 b 6 - 4h 2 b 6 = -h 2 b 6
5(a - h) 6 - 2(a - h) 6 = 3(a - h) 6

Multiplying powers

Numbers with powers can be multiplied, like other quantities, by writing them one after the other, with or without a multiplication sign between them.

Thus, the result of multiplying a 3 by b 2 is a 3 b 2 or aaabb.

Or:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

The result in the last example can be ordered by adding identical variables.
The expression will take the form: a 5 b 5 y 3.

By comparing several numbers (variables) with powers, we can see that if any two of them are multiplied, then the result is a number (variable) with a power equal to amount degrees of terms.

So, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Here 5 is the power of the result of the multiplication, equal to 2 + 3, the sum of the powers of the terms.

So, a n .a m = a m+n .

For a n , a is taken as a factor as many times as the power of n;

And a m is taken as a factor as many times as the degree m is equal to;

That's why, powers with the same bases can be multiplied by adding the exponents of the powers.

So, a 2 .a 6 = a 2+6 = a 8 . And x 3 .x 2 .x = x 3+2+1 = x 6 .

Or:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h - y) n ⋅ (b + h - y) = (b + h - y) n+1

Multiply (x 3 + x 2 y + xy 2 + y 3) ⋅ (x - y).
Answer: x 4 - y 4.
Multiply (x 3 + x - 5) ⋅ (2x 3 + x + 1).

This rule is also true for numbers whose exponents are negative.

1. So, a -2 .a -3 = a -5 . This can be written as (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

If a + b are multiplied by a - b, the result will be a 2 - b 2: that is

The result of multiplying the sum or difference of two numbers is equal to the sum or difference of their squares.

If you multiply the sum and difference of two numbers raised to square, the result will be equal to the sum or difference of these numbers in fourth degrees.

So, (a - y).(a + y) = a 2 - y 2.
(a 2 - y 2)⋅(a 2 + y 2) = a 4 - y 4.
(a 4 - y 4)⋅(a 4 + y 4) = a 8 - y 8.

Division of degrees

Numbers with powers can be divided like other numbers, by subtracting from the dividend, or by placing them in fraction form.

Thus, a 3 b 2 divided by b 2 is equal to a 3.

Or:
$\frac(9a^3y^4)(-3a^3) = -3y^4$
$\frac(a^2b + 3a^2)(a^2) = \frac(a^2(b+3))(a^2) = b + 3$
$\frac(d\cdot (a - h + y)^3)((a - h + y)^3) = d$

Writing a 5 divided by a 3 looks like $\frac(a^5)(a^3)$. But this is equal to a 2 . In a series of numbers
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
any number can be divided by another, and the exponent will be equal to difference indicators of divisible numbers.

When dividing degrees with the same base, their exponents are subtracted..

So, y 3:y 2 = y 3-2 = y 1. That is, $\frac(yyy)(yy) = y$.

And a n+1:a = a n+1-1 = a n . That is, $\frac(aa^n)(a) = a^n$.

Or:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

The rule is also true for numbers with negative values ​​of degrees.
The result of dividing a -5 by a -3 is a -2.
Also, $\frac(1)(aaaaa) : \frac(1)(aaa) = \frac(1)(aaaaa).\frac(aaa)(1) = \frac(aaa)(aaaaa) = \frac (1)(aa)$.

h 2:h -1 = h 2+1 = h 3 or $h^2:\frac(1)(h) = h^2.\frac(h)(1) = h^3$

It is necessary to master multiplication and division of powers very well, since such operations are very widely used in algebra.

Examples of solving examples with fractions containing numbers with powers

1. Reduce the exponents by $\frac(5a^4)(3a^2)$ Answer: $\frac(5a^2)(3)$.

2. Decrease the exponents by $\frac(6x^6)(3x^5)$. Answer: $\frac(2x)(1)$ or 2x.

3. Reduce the exponents a 2 /a 3 and a -3 /a -4 and bring to a common denominator.
a 2 .a -4 is a -2 the first numerator.
a 3 .a -3 is a 0 = 1, the second numerator.
a 3 .a -4 is a -1 , the common numerator.
After simplification: a -2 /a -1 and 1/a -1 .

4. Reduce the exponents 2a 4 /5a 3 and 2 /a 4 and bring to a common denominator.
Answer: 2a 3 /5a 7 and 5a 5 /5a 7 or 2a 3 /5a 2 and 5/5a 2.

5. Multiply (a 3 + b)/b 4 by (a - b)/3.

6. Multiply (a 5 + 1)/x 2 by (b 2 - 1)/(x + a).

7. Multiply b 4 /a -2 by h -3 /x and a n /y -3 .

8. Divide a 4 /y 3 by a 3 /y 2 . Answer: a/y.

9. Divide (h 3 - 1)/d 4 by (d n + 1)/h.

Views