Молния природное явление. Виды молний: линейные, внутриоблачные, наземные

Lightning 1882
(c) Photographer: William N. Jennings, c. 1882

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина , по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли .

Физические свойства молнии

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

Формирование молнии

Наиболее часто молния возникает в кучево-дождевых облаках , тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме нескольких км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках - внутриоблачные молнии , а могут ударять в землю - наземные молнии . Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую.

Наземные молнии

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация , создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.

По более современным представлениям, ионизация атмосферы для прохождения разряда происходит под влиянием высокоэнергетического космического излучения - частиц с энергиями 10 12 -10 15 эВ , формирующих широкий атмосферный ливень (ШАЛ) с понижением пробивного напряжения воздуха на порядок от такового при нормальных условиях.

По одной из гипотез, частицы запускают процесс, получивший название пробоя на убегающих электронах . Таким образом возникают электронные лавины, переходящие в нити электрических разрядов - стримеры , представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии .

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример , соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода .

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии , характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера , и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 2000-3000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженой, поэтому принято считать что разряд молнии происходит от облака по направлению к земле(сверху вниз).

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию - светящуюся полосу.

Внутриоблачные молнии

Внутриоблачные молнии над Тулузой, Франция. 2006 год

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору , меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением , так называемыми атмосфериками .

Полёт из Калькутты в Мумбаи.

Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт - особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках .

Молнии в верхней атмосфере

В 1989 году был обнаружен особый вид молний - эльфы, молнии в верхней атмосфере . В 1995 году был открыт другой вид молний в верхней атмосфере - джеты .

Эльфы

Джеты

Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), живут джеты относительно дольше эльфов .

Спрайты

Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний - не более 16 километров). Это некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало .

Взаимодействие молнии с поверхностью земли и расположенными на ней объектами

Глобальная частота ударов молний (шкала показывает число ударов в год на квадратный километр)

Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год. 75 % этих молний ударяет между облаками или внутри облаков, а 25 % - в землю.

Самые мощные молнии вызывают рождение фульгуритов .

Ударная волна от молнии

Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию . Он вызывает появление ударной волны, опасной в непосредственной близости. Ударная волна от достаточно мощного грозового разряда на расстояниях до нескольких метров может наносить разрушения, ломать деревья, травмировать и контузить людей даже без непосредственного поражения электрическим током. Например, при скорости нарастания тока 30 тысяч ампер за 0,1 миллисекунду и диаметре канала 10 см могут наблюдаться следующие давления ударной волны :

  • на расстоянии от центра 5 см (граница светящегося канала молнии) - 0,93 МПа,
  • на расстоянии 0,5 м - 0,025 МПа (разрушение непрочных строительных конструкций и травмы человека),
  • на расстоянии 5 м - 0,002 МПа (выбивание стёкол и временное оглушение человека).

На бо́льших расстояниях ударная волна вырождается в звуковую волну - гром .

Люди и молния

Молнии - серьёзная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по кратчайшему пути «грозовое облако-земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание , падает, могут отмечаться судороги , часто останавливается дыхание и сердцебиение . На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1 - 2 суток после смерти). Они - результат расширения капилляров в зоне контакта молнии с телом.

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления , с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают повреждённые ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьёзным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами , и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

По этой причине нельзя прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности.

Из деревьев, поражённых молнией, делают музыкальные инструменты, приписывая им уникальные свойства.

Молния и электроустановки

Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение , вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования таким как разрядниками , нелинейными ограничителями перенапряжения, длинноискровыми разрядниками. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы. Для электронных устройств представляет опасность также и электромагнитный импульс , создаваемый молнией.

Молния и авиация

Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса, летательные аппараты оборудуются разрядниками.

Ввиду того, что электрическая емкость самолёта, находящегося в воздухе невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлете и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.

Молния и надводные корабли

Молния также представляет очень большую угрозу для надводных кораблей в виду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряженности электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению водотечности корпуса.

Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надежно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии.

Деятельность человека, вызывающая молнию

При наземном ядерном взрыве за доли секунды до прихода границы огненной полусферы в нескольких сотнях метров (~400-700 м при сравнении со взрывом 10,4 Мт) от центра дошедшее гамма-излучение продуцирует электромагнитный импульс с напряжённостью на уровне ~100-1000 кВ/м, вызвающий разряды молний, бьющих от земли вверх перед приходом границы огненной полусферы.


См. также

Примечания

  1. Ермаков В.И., Стожков Ю.И. Физика грозовых облаков // Физический институт им. П.Н. Лебедева, РАН, М.2004 г. :37
  2. В возникновении молний обвинили космические лучи Lenta.Ru , 09.02.2009
  3. Красные Эльфы и Синие Джеты
  4. ELVES, a primer: Ionospheric Heating By the Electromagnetic Pulses from Lightning
  5. Fractal Models of Blue Jets, Blue Starters Show Similarity, Differences to Red Sprites
  6. V.P. Pasko, M.A. Stanley, J.D. Matthews, U.S. Inan, and T.G. Wood (March 14, 2002) "Electrical discharge from a thundercloud top to the lower ionosphere, " Nature , vol. 416, pages 152-154.
  7. Появление НЛО объяснили спрайтами . lenta.ru (24.02.2009). Архивировано из первоисточника 23 августа 2011. Проверено 16 января 2010.
  8. John E. Oliver Encyclopedia of World Climatology . - National Oceanic and Atmospheric Administration, 2005. - ISBN 978-1-4020-3264-6
  9. . National Oceanic and Atmospheric Administration. Архивировано
  10. . NASA Science. Science News. (December 5, 2001). Архивировано из первоисточника 23 августа 2011. Проверено 15 апреля 2011.
  11. К. БОГДАНОВ «МОЛНИЯ: БОЛЬШЕ ВОПРОСОВ, ЧЕМ ОТВЕТОВ». «Наука и жизнь» № 2, 2007
  12. Живлюк Ю.Н., Мандельштам С.Л. О температуре молнии и силе грома // ЖЭТФ. 1961. Т. 40, вып. 2. С. 483-487.
  13. Н. А. Кун «Легенды и мифы Древней Греции» ООО «Издательство АСТ» 2005-538,с. ISBN 5-17-005305-3 Стр.35-36.

Сколько же в действительности бывает видов молний? Оказывается, их больше десяти видов, и наиболее интересные из них приводятся в этой статье. Естественно, здесь не только голые факты, но и реальные фотографии реальных же молний.

Итак, виды молний будут рассматриваться по порядку, от наиболее часто встречающихся линейных молний до редчайших спрайтовых молний. Каждому виду молний приводится одно или более фото, которые помогают понять, что же на самом деле представляет собой такая молния.

Л инейная молния (туча-земля )

Как получить такую молнию? Да очень просто - все, что требуется, это пара сотен кубических километров воздуха, достаточная для образования молнии высота и мощный тепловой двигатель - ну, к примеру, Земля. Готовы? Теперь возьмем воздух и последовательно начнем его нагревать. Когда он начнет подниматься, то с каждым метром подъема нагретый воздух охлаждается, постепенно становясь холоднее и холоднее. Вода конденсируется во все более крупные капли, образуя грозовые облака. Помните те темные тучи над горизонтом, при виде которых замолкают птицы и перестают шелестеть деревья? Так вот, это и есть грозовые облака, которые рождают молнии и гром.

Ученые считают, что молнии образуются в результате распределения электронов в облаке, обычно позитивно заряжен верх облака, а негативно - из. В результате получаем очень мощный конденсатор, который может время от времени разряжаться в результате скачкообразного преобразования обычного воздуха в плазму (это происходит из-за все более сильной ионизации атмосферных слоев, близких к грозовым тучам). Плазма образует своеобразные каналы, которые, при соединении с землей, и служат отличным проводником для электричества. Облака постоянно разряжаются по этим каналам, и мы видим внешние проявления данных атмосферных явлений в виде молний.

Кстати, температура воздуха в месте прохождения заряда (молнии) достигает 30 тысяч градусов, а скорость распространения молнии - 200 тысяч километров в час. В общем и целом, нескольких молний вполне хватило для электроснабжения небольшого города на несколько месяцев.


И такие молнии бывают. Образуются они в результате накапливающегося электростатического заряда на вершине самого высокого объекта на земле, что делает его весьма “привлекательным” для молнии. Такие молнии образуются в результате “пробивания” воздушной прослойки между вершиной заряженного объекта и нижней частью грозовой тучи.

Чем выше объект, тем больше вероятность того, что молния в него ударит. Так что правду говорят - не стоит прятаться от дождя под высокими деревьями.



Да, молниями могут “обмениваться” и отдельные облака, поражающие электрическими зарядами друг друга. Все просто - поскольку верхняя часть облака заряжена позитивно, а нижняя - негативно, рядом стоящие грозовые облака могут простреливать электрическими зарядами друг друга.

Довольно частым явлением является молния пробивающая одно облако, и гораздо более редким явлением является молния, которая исходит от одного облака к другому.




Эта молния не бьет в землю, она распространяется в горизонтальной плоскости по небу. Иногда такая молния может распространяться по чистому небу, исходя от одной грозовой тучи. Такие молнии очень мощные и очень опасные.




Эта молния выглядит как несколько молний, идущих параллельно друг другу. В образовании их нет никакой загадки - если дует сильный ветер, он может расширять каналы из плазмы, о которых мы писали выше, и в результате образуется вот такая вот дифференцированная молния.



Это очень, очень редкая молния, существует, да, но как она образуется - пока что можно только догадываться. Ученые предполагают, что пунктирная молния образуется в результате быстрого остывания некоторых участков трека молнии, что и превращает обычную молнию в пунктирную. Как видим, такое объяснение явно нуждается в доработке и дополнении.




До сих пор мы говорили только о том, что случается ниже облаков, или на их уровне. Но оказывается, что некоторые виды молний бывают и выше облаков. О них было известно со времени появления реактивной авиации, но вот сфотографированы и сняты на видео эти молнии были только в 1994 году. Больше всего они похожи на медуз, правда? Высота образования таких молний - около 100 километров. Пока что не очень понятно, что они из себя представляют.

Вот фото и даже видео уникальных спрайтовых молний. Очень красиво.




Некоторые люди утверждают, что шаровых молний не бывает. Другие размещают видео шаровых молний на YouTube и доказывают, что все это - реальность. В общем, ученые пока твердо не уверены в существовании шаровых молний, а наиболее известным доказательством их реальности является фото, сделанное японским студентом.



Это, в принципе и не молнии, а просто явление тлеющего разряда на конце различных острых объектов. Огни Святого Эльма были известны в древности, сейчас они детально описаны и запечатлены на пленку.




Это очень красивые молнии, которые появляются при извержении вулкана. Вероятно, газо-пылевой заряженный купол, пробивающий сразу несколько слоев атмосферы, вызывает возмущения, поскольку сам несет довольно значительный заряд. Выглядит все это очень красиво, но жутковато. Ученые пока не знают точно, почему такие молнии образуются, и существует сразу несколько теорий, одна из которых и изложена выше.


Вот несколько интересных фактов о молниях, которые не так часто публикуются:

* Типичная молния длится около четверти секунды и состоит из 3-4 разрядов.

* Средняя гроза путешествует со скоростью 40 км в час.

* Прямо сейчас в мире гремят 1800 гроз.

* В американский Эмпайр-стейт-билдинг молния ударяет в среднем 23 раза в год.

* В самолеты молния попадает в среднем один раз на каждые 5-10 тысяч летных часов.

* Вероятность быть убитым молнией составляет 1 к 2 000 000. Такие же шансы у каждого из нас умереть от падения с кровати.

* Вероятность увидеть шаровую молнию хотя бы раз в жизни составляет 1 к 10 000.

* Люди, в которых попала молния, считались отмеченными богом. А если они погибали, то якобы попадали прямо на небеса. В древности жертв молнии хоронили на месте гибели.


Что следует делать при приближении молнии?

В доме

* Закройте все окна и двери.
* Выключите из розеток все электроприборы. Не прикасайтесь к ним, в том числе к телефонам, во время грозы.
* Не подходите к ваннам, кранам и раковинам, поскольку металлические трубы могут проводить электричество.
* Если в комнату залетела шаровая молния, постарайтесь выйти побыстрее и закройте дверь с другой стороны. Если не удается — хотя бы замрите на месте.

На улице

* Постарайтесь зайти в дом или в машину. В машине не прикасайтесь к металлическим частям. Автомобиль не должен быть припаркован под деревом: вдруг молния ударит в него и дерево свалится прямо на вас.
* Если укрытия нет, выйдите на открытое пространство и, согнувшись, прижмитесь к земле. Но просто ложиться нельзя!
* В лесу лучше укрыться под низкими кустами. НИКОГДА не стойте под отдельно стоящим деревом.
* Избегайте башен, оград, высоких деревьев, телефонных и электрических проводов, автобусных остановок.
* Держитесь подальше от велосипедов, мангалов, других металлических предметов.
* Не подходите к озеру, реке или другим водоемам.
* Снимите с себя все металлическое.
* Не стойте в толпе.
* Если вы находитесь в открытом месте и вдруг чувствуете, что волосы встали дыбом, или слышите странный шум, исходящий от предметов (это значит, молния вот-вот ударит!), нагнитесь вперед, положив руки на колени (но не на землю). Ноги должны быть вместе, пятки прижаты друг к другу (если ноги не соприкасаются, разряд пройдет через тело).
* Если гроза застала вас в лодке и к берегу приплыть вы уже не успеваете, пригнитесь ко дну лодки, соедините ноги и накройте голову и уши.

Древние люди далеко не всегда считали грозу и молнию, а также сопровождающий их раскат грома проявлением гнева богов. Например, для эллинов гром и молния являлись символами верховной власти, тогда как этруски считали их знамениями: если вспышка молнии была замечена с восточной стороны, это означало, что всё будет хорошо, а если сверкала на западе или северо-западе – наоборот.

Идею этрусков переняли римляне, которые были убеждены, что удар молнии с правой стороны является достаточным основанием, чтобы отложить все планы на сутки. Интересная трактовка небесных искр была у японцев. Две ваджры (молнии) считались символами Айдзен-мео, бога сострадания: одна искра находилась на голове божества, другую он держал в руках, подавляя нею все негативные желания человечества.

Молния – это огромных размеров электрический разряд, который всегда сопровождается вспышкой и громовыми раскатами (в атмосфере чётко просматривается сияющий канал разряда, напоминающий дерево). При этом вспышка молнии почти никогда не бывает одна, за ней обычно следует две, три, нередко доходит и до нескольких десятков искр.

Эти разряды почти всегда образуются в кучево-дождевых облаках, иногда – в слоисто-дождевых тучах больших размеров: верхняя граница нередко достигает семи километров над поверхностью планеты, тогда как нижняя часть может почти касаться земли, пребывая не выше пятисот метров. Молнии могут образовываться как в одной туче, так и между находящимися рядом наэлектризованными облаками, а также между облаком и землей.

Состоит грозовая туча из большого количества пара, сконденсированного в виде льдинок (на высоте, превышающей три километра это практически всегда ледяные кристаллы, поскольку температурные показатели здесь не поднимаются выше нуля). Перед тем как туча становится грозовой, внутри неё начинают активное движение ледяные кристаллы, при этом двигаться им помогают восходящие с нагретой поверхности потоки тёплого воздуха.

Воздушные массы увлекают за собой вверх более мелкие льдинки, которые во время движения постоянно наталкиваются на более крупные кристаллы. В результате кристаллики меньших размеров оказываются заряженными положительно, более крупные – отрицательно.

После того как маленькие ледяные кристаллики собираются наверху, а большие – снизу, верхняя часть облака оказывается положительно заряженной, нижняя – отрицательно. Таким образом, напряжённость электрического поля в туче достигает чрезвычайно высоких показателей: миллион вольт на один метр.

Когда эти противоположно заряженные области сталкиваются друг с другом, в местах соприкосновения ионы и электроны образовывают канал, по которому вниз устремляются все заряженные элементы и образуется электрический разряд – молния. В это время выделяется настолько мощная энергия, что её силы вполне хватило бы на то, чтобы на протяжении 90 дней питать лампочку мощностью в 100 Вт.


Канал раскаляется почти до 30 тыс. градусов Цельсия, что в пять раз превышает температурные показатели Солнца, образуя яркий свет (вспышка обычно длится лишь три четверти секунды). После образования канала грозовое облако начинает разряжаться: за первым разрядом следуют две, три, четыре и больше искр.

Удар молнии напоминает взрыв и вызывает образование ударной волны, чрезвычайно опасной для любого живого существа, оказавшегося возле канала. Ударная волна сильнейшего электрического разряда в нескольких метрах от себя вполне способна сломать деревья, травмировать или контузить даже без прямого поражения электричеством:

  • На расстоянии до 0,5 м до канала молния способна разрушить слабые конструкции и травмировать человека;
  • На расстоянии до 5 метров постройки остаются целыми, но может выбить окна и оглушить человека;
  • На больших расстояниях ударная волна негативных последствий не несёт и переходит в звуковую волну, известную как громовые раскаты.


Раскаты грома

Через несколько секунд после того как был зафиксирован удар молнии, из-за резкого повышения давления вдоль канала, атмосфера раскаляется до 30 тыс. градусов Цельсия. В результате этого возникают взрывообразные колебания воздуха и возникает гром. Гром и молния тесно взаимосвязаны друг с другом: длина разряда нередко составляет около восьми километров, поэтому звук с разных его участков доходит в разное время, образуя громовые раскаты.

Интересно, что измеряя время, которое прошло между громом и молнией, можно узнать, насколько далеко находится эпицентр грозы от наблюдателя.

Для этого нужно умножить время между молнией и громом на скорость звука, который составляет от 300 до 360 м/с (например, если промежуток времени составляет две секунды, эпицентр грозы находится немногим более чем в 600 метрах от наблюдателя, а если три – на расстоянии километра). Это поможет определить, удаляется или приближается гроза.

Удивительный огненный шар

Одним из наименее изученных, а потому наиболее таинственных явлений природы считается шаровая молния – передвигающийся по воздуху святящийся плазменный шар. Загадочен он потому, что принцип формирования шаровой молнии неизвестен и поныне: несмотря на то, что существует большое число гипотез, объясняющих причины появления этого удивительного явления природы, на каждую из них нашлись возражения. Учёным так и не удалось опытным путём добиться образования шаровой молнии.

Шарообразная молния способна существовать длительное время и перемещаться по непрогнозируемой траектории. Например, она вполне способна зависать несколько секунд в воздухе, после чего метнуться в сторону.

В отличие от простого разряда, плазменный шар всегда бывает один: пока не было одновременно зафиксировано двух и больше огненных молний. Размеры шаровой молнии колеблются от 10 до 20 см. Для шаровой молнии характерны белый, оранжевый или голубой тона, хотя нередко встречаются и другие цвета, вплоть до чёрного.


Ученые еще не определили температурные показатели шаровой молнии: несмотря на то, что она по их подсчётам должна колебаться от ста до тысячи градусов Цельсия, люди, находившиеся недалеко от этого феномена, не ощущали исходившей от шаровой молнии теплоты.

Основная трудность при изучении этого феномена состоит в том, что зафиксировать его появление учёным удаётся редко, а показания очевидцев часто ставят под сомнение тот факт, что наблюдаемое ими явление действительно являлось шаровой молнией. Прежде всего, расходятся показания относительно того, в каких условиях она появилась: в основном её видели во время грозы.

Существуют также показания, что шаровая молния может появляться и в погожий день: спуститься с облаков, возникнуть в воздухе или появиться из-за какого-нибудь предмета (дерева или столба).

Ещё одной характерной особенностью шаровой молнии является её проникновение в закрытые комнаты, была замечена даже в кабинах пилотов (огненный шар может проникать через окна, спускаться по вентиляционным каналам и даже вылетать из розеток или телевизора). Также были неоднократно задокументированы ситуации, когда плазменный шар закреплялся на одном месте и постоянно там появлялся.

Нередко появление шаровой молнии не вызывает неприятностей (она спокойно движется в воздушных потоках и через какое-то время улетает или исчезает). Но, были замечены и печальные последствия, когда она взрывалась, моментально испаряя находящуюся неподалёку жидкость, плавя стекло и металл.


Возможные опасности

Поскольку появление шаровой молнии всегда неожиданно, увидев возле себя этот уникальный феномен, главное, не впадать в панику, резко не двигаться и никуда не бежать: огненная молния очень восприимчива к колебаниям воздуха. Необходимо тихо уйти с траектории движения шара и постараться держаться от неё как можно дальше. Если человек находится в помещении, нужно потихоньку дойти до оконного проёма и открыть форточку: известно немало историй, когда опасный шар покидал квартиру.

В плазменный шар ничего нельзя бросать: он вполне способен взорваться, а это чревато не только ожогами или потерей сознания, но остановкой сердца. Если же случилось так, что электрический шар зацепил человека, нужно перенести его в проветриваемую комнату, теплее укутать, сделать массаж сердца, искусственное дыхание и сразу же вызвать врача.

Что делать в грозу

Когда начинается гроза и вы видите приближение молнии, нужно найти укрытие и спрятаться от непогоды: удар молнии нередко смертелен, а если люди и выживают, то часто остаются инвалидами.

Если же никаких построек поблизости нет, а человек в это время в поле, он должен учитывать, что от грозы лучше спрятаться в пещере. А вот высоких деревьев желательно избегать: молния обычно метит в самое большое растение, а если деревья имеют одинаковую высоту, то попадает в то, что лучше проводит электричество.

Чтобы защитить отдельно стоящее строение или конструкцию от молнии, возле них обычно устанавливают высокую мачту, наверху которой закреплён заострённый металлический стержень, надёжно соединённый с толстым проводом, на другом конце находится закопанный глубоко в землю металлический предмет. Схема работы проста: стержень от грозовой тучи всегда заряжается противоположным облаку зарядом, который, стекая по проводу под землю, нейтрализует заряд тучи. Это устройство называется громоотвод и устанавливается на всех зданиях городов и других людских поселений.

""физическое явление""

Гигантский электрический искровой разряд в атмосфере, проявляющийся обычно яркой вспышкой света и сопровождающим её громом. Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака.

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуются в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Процесс развития наземной молнии состоит из несколько стадий. На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха, ионизуют их. Т. о. возникают электронные лавины, переходящие в нити электрических разрядов - стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру.

Движение лидера к земной поверхности происходит ступенями в несколько десятков м со скоростью ~ 5*10000000 м/сек, после чего его движение приостанавливается на несколько десятков мксек, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков м. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 2*100000 м/сек. По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером.

Формы молний

Линейная молния

Разряд линейной молнии происходит между облаками, внутри облака или между облаком и землёй, и обычно имеет длину около 2-3 км, но бывают молнии длиной и до 20-30 км.

Выглядит как ломаная линия, зачастую с многочисленными ответвлениями. Цвет молнии - белый, жёлтый, голубой или красноватый

Чаще всего диаметр нити такой молнии достигает пару десятков сантиметров. Этот вид самый распространенный; мы видим его чаще всего. Линейная молния появляется при напряжении электрического поля атмосферы до 50 кВ/м, разность потенциалов на ее пути может достичь сотни миллионов вольт. Сила тока молнии такого рода - порядка 10 тысяч ампер. Грозовое облако, которое дает разряд линейной молнии каждые 20 секунд, имеет электрическую энергию в 20 млн. кВт. Потенциальная электрическая энергия, запасенная таким облаком,равна энергие мегатонной бомбы.

Это наиболее часто встречающаяся форма молнии.

Плоская молния

Плоская молния имеет вид рассеянной вспышки света на поверхности облаков. Грозы, сопровождаемые только плоскими молниями, относятся к разряду слабых, и наблюдаются они обычно лишь ранней весной или поздней осенью.

Ленточная молния

Ленточная молния - несколько одинаковых зигзагообразных разрядов от облаков к земле, параллельно смещённых относительно друг друга с небольшими промежутками или без них.

Четочная молния

Редкая форма электрического разряда при грозе, в виде цепочки из светящихся точек. Время существования четочной молнии 1–2 секунды. Примечательно, что траектория четочной молнии нередко имеет волнообразный характер. В отличие от линейной молнии след четочной молнии не ветвится - это является отличительной особенностью этого вид.

Ракетообразная молния

Ракетообразная молния представляет собой медленно развивающийся разряд, продолжительностью 1–1.5 секунды. Ракетообразная молния наблюдается очень редко.

Шаровая молния

Шаровая молния - яркий светящийся электрический заряд различный по окраске и величине. Вблизи земли он чаще всего выглядит как шар диаметром около 10 см, реже имеет форму эллипсоида, капли, диска, кольца и даже цепи соединённых шаров. Длительность существования шаровой молнии - от нескольких секунд до нескольких минут, цвет свечения - белый, жёлтый, светло-голубой, красный или оранжевый. Обычно этот вид молнии медленно перемещается, почти бесшумно, в сопровождении лишь легкого треска, свиста, жужжания или шипения. Шаровая молния может проникать в закрытые помещения через щели, трубы, окна.

Редкая форма молнии, по статистике на тысячу обычных молний приходится 2-3 шаровых.

Природа шаровой молнии изучена не до конца. Существует множество гипотез о происхождении шаровой молнии, от научных до фантастических.

Шторовая молния

Шторовая молния выглядит как широкая вертикальная полоса света, сопровождающаяся низким негромким гулом.

Объёмная молния

Объёмная молния – белая или красноватая вспышка при низкой полупрозрачной облачности, с сильным звуком треска “отовсюду”. Чаще наблюдается перед основной фазой грозы.

Полосовая молния

Полосовая молния - сильно напоминает полярное сияние, “положенное на бок” - горизонтальные полосы света (3-4 полосы) группируются друг над другом.

Эльфы, джеты и спрайты

Эльфы (англ. Elves; Emissions of Light and Very Low Frequency Perturbations from Electromagnetic Pulse Sources) представляют собой огромные, но слабосветящиеся вспышки-конусы диаметром около 400 км, которые появляются непосредственно из верхней части грозового облака.

Джеты представляют собой трубки-конусы синего цвета.

Спрайты - некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало.

Джеты и Эльфы образуются, начиная от верхушек облаков до нижнего края ионосферы (90 километров над поверхностью Земли). Продолжительность этих сияний составляет доли секунды. Чтобы сфотографировать такие короткоживущие явления необходимы приборы для высокоскоростной съемки. Только в 1994 году, пролетая в самолете над большой грозой, ученым удалось заснять это потрясающее зрелище.

Другие явления

Сполохи

Сполохи – белые или голубые беззвучные вспышки света, наблюдаемые ночью в малооблачную или ясную погоду. Сполохи обычно бывают во второй половине лета.

Зарницы

Зарницы – отблески далёких высоких гроз, ночью видны на расстоянии до 150 – 200 км. Звука грома при зарницах не слышно, небо малооблачно.

Вулканическая молния

Существует два типа вулканических молний. Один возникает у кратера вулкана, а другой, как видно на этом снимке вулкана Пуйеуэ в Чили, электризует дым вулкана. Вода и замерзшие частицы пепла в дыме трутся друг о друга, и это вызывает статические разряды и появляется вулканическая молния.

Молнии Кататумбо

Молнии Кататумбо - удивительный феномен, который наблюдается лишь в одном месте на нашей планете - в месте впадения реки Кататумбо в озеро Маракайбо (Южная Америка). Самое удивительное в этом виде молнии, что разряды ее длятся около 10 часов и появляются ночью 140–160 раз в год. Молнии Кататумбо хорошо видно на достаточно большое расстояние - 400 километров. Молнии такого рода часто использовали как компас, от чего место их наблюдения люди даже прозвали - «Маяк Маракайбо».

Большинство говорят,что молнии Кататумбо - крупнейший одиночный генератор озона на Земле, т.к. ветры, приходящие со стороны Анд, вызывают грозы. Метан, которым богата атмосфера этих заболоченных мест, поднимается к облакам, подпитывая разряды молнни.

Муниципальное общеобразовательное учреждение

Гимназия «Лаборатория Салахова»

Творческая работа по физике

на тему: Электрические явления в природе: молния

История

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли.

Физические свойства молнии

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

Формирование молнии

Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках - внутриоблачные молнии, а могут ударять в землю - наземные молнии. Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.

Наземные молнии

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их. По более современным представлениям, разряд инициируют высокоэнергетические космические лучи, которые запускают процесс, получивший название пробоя на убегающих электронах. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов - стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары.

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию - светящуюся полосу.

Внутриоблачные молнии

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками. Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт - особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.

«В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год».

Самые мощные молнии вызывают рождение фульгуритов.

Люди и молния

Молнии - серьезная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах т.к. электрический ток идет по кратчайшему пути "грозовое облако-земля". Часто молния попадает в деревья и трансформаторные установки на железной дороге,вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн расположенных на крышах высотных зданий, а также для сетевого оборудования.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, могут отмечаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1 - 2 суток после смерти). Они - результат расширения капилляров в зоне контакта молнии с телом.

При поражении молнией первая медицинская помощь должна быть неотложной. В тяжелых случаях (остановка дыхания и сердцебиения) необходима реанимация, её должен оказать, не ожидая медицинских работников, любой свидетель несчастья. Реанимация эффективна только в первые минуты после поражения молнией, начатая через 10 - 15 минут она, как правило, уже не эффективна. Экстренная госпитализация необходима во всех случаях.

Жертвы молний

1. В мифологии и литературе:

1. Асклепий, Эскулап - сын Аполлона - бог врачей и врачебного искусства, не только исцелял, но и оживлял мёртвых. Чтобы восстановить нарушенный мировой порядок Зевс поразил его своей молнией.

2. Фаэтон - сын бога Солнца Гелиоса - однажды взялся управлять солнечной колесницей своего отца, но не сдержал огнедышащих коней и едва не погубил в страшном пламени Землю. Разгневанный Зевс пронзил Фаэтона молниями.

2. Исторические личности:

1. Российский академик Г. В. Рихман - в 1753 году погиб от удара молнии.

2. Народный депутат Украины, экс-губернатор Ровенской области В. Червоний 4 Июля 2009 года погиб от удара молнии.

· Рой Салливан остался живым после семи ударов молнией.

· Американский майор Саммерфорд умер после продолжительной болезни (результат удара третьей молнией). Четвертая молния полностью разрушила его памятник на кладбище.

· У индейцев Анд удар молнией считается необходимым для достижения высших уровней шаманской инициации.

Деревья и молния

Ствол пораженного молнией тополя

Высокие деревья - частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах шрамы от молний можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего - в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большое сопротивление электричеству.

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления, с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают поврежденные ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьезным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами, и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

Из деревьев, пораженных молнией, делают музыкальные инструменты, приписывая им уникальные свойства.

Просмотров