Спектры. Спектральный анализ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Уфимский государственный нефтяной технический университет»

Кафедра автоматизации технологических процессов и производств

по дисциплине «Промышленный экологический мониторинг»

на тему «Спектральные методы анализа»

ВЫПОЛНИЛ

ст. гр. МАГ01-13-01

Шарифисламов А.Б.

ПРОВЕРИЛ

Доцент Прахова М.Ю.

  • ВВЕДЕНИЕ
  • 1. СПЕКТРОФОТОМЕТРИЧЕСКИЙ МЕТОД АНАЛИЗА
  • 1.1 Общая характеристика метода
  • 1.2 Важнейшие законы светопоглощения
  • 1.3 Причины отклонений от закона Бера в спектрофотометрии
  • 1.4 Аппаратура в спектрофотометрии
  • 2. ЛЮМИНЕСЦЕНТНЫЕ МЕТОДЫ АНАЛИЗА
  • 3. ИНФРАКРАСНАЯ СПЕТРОСКОПИЯ
  • 4. АТОМНО-ЭМИССИОННЫЕ МЕТОДЫ АНАЛИЗА
  • 4.1 Общая характеристика метода
  • 4.2 Атомизаторы в атомной эмиссии
  • 4.3 Аппаратура в атомно-эмиссионном анализе
  • СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
  • ВВЕДЕНИЕ
  • Спектральные методы анализа - это методы, основанные на определении химического состава и строения веществ по их спектру.
  • Спектром вещества называют упорядоченное по длинам волн электромагнитное излучение, испускаемое, поглощаемое, рассеиваемое или преломляемое веществом. Методы, основанные на получении и изучении спектров испускания (эмиссии) электромагнитного излучения (энергии), называют эмиссионными, поглощения (абсорбции) - абсорбционными, рассеяния - методами рассеяния, преломления - рефракционными.
  • Спектр вещества получают, воздействуя на него температурой, потоком электронов, световым потоком (электромагнитной энергией) с определённой длиной волны (частоты излучения) и другими способами. При определённой величине энергии воздействия вещество способно перейти в возбуждённое состояние. При этом происходят процессы, приводящие к появлению в спектре излучения с определённой длиной волны.
  • Излучение, поглощение, рассеяние или рефракция электромагнитного излучения может рассматриваться как аналитический сигнал, несущий информацию о качественном и количественном составе вещества или о его структуре. Частота (длина волны) излучения определяется составом исследуемого вещества, а интенсивность излучения пропорциональна числу частиц, вызвавших его появление, т.е. количеству вещества или компонента смеси.
  • Каждый из аналитических методов обычно использует не полный спектр вещества, охватывающий диапазон длин волн от рентгеновских излучений до радиоволн, а только определённую его часть. Спектральные методы обычно различают по диапазону длин волн спектра, являющемуся рабочим для данного метода: ультрафиолетовые (УФ), рентгеновские, инфракрасные (ИК), микроволновые и т.д.

1. СПЕКТРОФОТОМЕТРИЧЕСКИЙ МЕТОД АНАЛИЗА

1.1 Общая характеристика метода

Спектрофотометриейобычно называют метод оптического молекулярного абсорбционного анализа(иногда в это понятие включают и метод атомно-абсорбционного анализа). Объектом спектрофотометрических измерений, как правило, являются растворы. Фотометрируемый раствор помещают в кювету-- сосуд с плоскими параллельными прозрачными гранями.

Спектрофотометрический метод, будучи абсорбционным, основан на измерении поглощениясвета. Его чаще всего измеряют косвенно-- путем сравнения интенсивностей света внешнего источника, падающего на образец и прошедшего сквозь образец.

спектрофотометрический люминесцентный инфракрасный спектроскопия

1.2 Важнейшие законы светопоглощения

Закон Бугера-Ламберта-Бера. Пусть слой однородной среды толщиной dl содержит светопоглощающее вещество в концентрации с . Через него пропускают монохроматическийсветовой поток интенсивности I . Интенсивность света на выходе из слоя равна I + dI , причем dl < 0 (поток ослабляется). Экспериментально было установлено, что доля поглощенного света - dI / I прямо пропорциональна толщине слоя и концентрации поглощающего вещества:

Интегрируя это выражение, получаем:

(1. 2 )

Интенсивность светового потока, падающего на образец (т.е. при l = 0) обозначим как Iо. Подставляя в (1.2) l = 0 и I = I 0 , находим, что const = - ln I 0 . Подставляя это значение в (1.2) и переходя от натуральных логарифмов к десятичным, получаем:

(здесь k = 2.303).

Величина I/I 0 называется пропусканиеми обозначается Т (0 < Т < 1). Величина

называется оптической плотностью(значению Т = 1 соответствует А = 0, а Т = 0 -- А = + оо). Коэффициент k называется коэффициентом поглощения.

Выражение (1.3) является основным законом светопоглощения и называется законом Бугера-Ламберта-Бера.

Если концентрация поглощающих частиц выражена в моль/л, а толщина слоя -- в сантиметрах,то коэффициент поглощения обозначается буквой е и называется молярным коэффициентом поглощения.Общепринятая форма записи закона Бугера-Ламберта-Бера в спектрофотометрии выглядит как

А = elc (1.5)

1.3 Причины отклонений от закона Бера в спектрофотометрии

В действительности линейный характер зависимости А от с часто нарушается -- особенно в области высоких концентраций и/или значений оптических плотностей. Основные причины этого явления состоят в след ующем.

Немонохроматичность источника и влияние рассеянного света. На практике эта причина является основной. При выводе закона Бера было сделано предположение о строгой монохроматичности источника света. В действительности в спектре испускания любого источника всегда присутствуют фотоны различных длин волн.

Такие же отклонения от закона Бера вызывает и влияние рассеянного света -- некоторой части света источника, в силу неидеальности оптической схемы прибора попадающей непосредственно на детектор, минуя фотометрируемый образец.

Указанные причины относятся к числу инструментальных. Они приводят к кажущимся нарушениям закона Бера, поскольку при этом не соблюдаются предпосылки, положенные в основу его вывода.

Физико-химические процессы. Обратим внимание, что в выражении закона бера величина с представляет собой равновесную концентрацию поглощающих частиц определенного сорта. При построении же концентрационной зависимости А от с по оси абсцисс откладывают общую концентрацию растворенного вещества. Несовпадение этих величин может привести к нарушению закона Бера. Отклонение от линейной зависимости будет иметь место тогда, когда на глубину протекания физико-химических процессов с поглощающим веществом оказывает влияние его концентрация. Это -- процессы ассоциацин-днссоциации.

Влияние показателя преломления. На гранипе раздела двух сред некоторая доля падающего света всегда отражается. Эта доля зависит от показателей преломлениясред. Если показатель преломления раствора зависит от его концентрации, то от нее зависит и доля отраженного кюветой света и, следовательно, измеренное значение оптической плотности. Эта причина нарушения закона Бера является истинной,так как обусловлена действием факторов, не учтенных при его выводе. На практике ею обычно можно пренебречь, поскольку в спектрофотометрии, как правило, имеют дело с разбавленными растворами, показатель преломления которых можно считать не зависящим от концентрации.

Все рассмотренные причины приводят к нарушению не только закона Бера, но и закона аддитивности.

1.4 Аппаратура в спектрофотометрии

Принципиальная схема прибора для измерения оптической плотности растворов приведена ниже

Источники. В молекулярной абсорбционной спектроскопии в качестве источника в основном используют лампы накаливания, испускающие

Рисунок 1.1 Принципиальная схема прибора для измерения оптической плотности

непрерывное излучение. В УФ-области применяют водородные, дейтериевые, ксеноновые лампы, излучающие свет с длинами волн не менее 350 нм. Это газоразрядные трубки, представляющие собой баллоны из кварца, заполненные газом под высоким давлением. В результате электроразряда молекулы газа возбуждаются и возвращаются в исходное состояние, испуская непрерывный спектр. В ближней УФ, видимой и ближней ИК-областях (350...3000 нм) применяют вольфрамовые лампы, штифты Нернста, галогеновые лампы, нихромовые излучатели, глобаторы, лазеры.

Монохроматоры и светофильтры. В зависимости от способа монохроматизации различают два класса абсорбционных приборов: фотометры и спектрофотометры. В фотометрах используют светофильтры, в спектрофотометрах - призмы и дифракционные решетки.

Кюветы. В абсорбционной спектроскопии измеряют не абсолютные значения оптической плотности, а разность оптических плотностей исследуемого раствора и раствора сравнения, оптическая плотность которого принята за нуль. Кювету с исследуемым раствором называют рабочей, а с раствором сравнения - кюветой сравнения. Кюветы должны быть прозрачны в области спектра, в которой ведётся измерение оптической плотности. Для работы в видимой области кюветы изготавливают из стекла, а в ультрафиолетовой - из кварца.

Детекторы. Для приёма сигнала в видимой и УФ-областях обычно применяют сурьмяно-цезиевый (180...650 нм) и кислородно-цезиевый (600...1100 нм) фотоэлементы, а также фотоумножители.

К этим основным узлам следует добавить оптическую систему, состоящую из линз, зеркал и призм. Они служат для создания параллельного пучка света, изменения его направления. Для уравнения световых потоков служат диафрагмы, оптические клинья.

Фотоэлектроколориметры (ФЭК) имеют простую конструкцию и пригодны для измерения концентраций веществ в видимой и ближней УФ-области. Спектрофотометры имеют более сложную конструкцию, их применяют для получения спектров поглощения и для измерения концентраций веществ. Оптические детали изготавливают из кварца, что позволяет измерить светопоглощение в видимой и УФ-области.

В зависимости от способа измерения различают одно- и двухлучевые приборы, от способа регистрации - регистрирующие и нерегистрирующие.

В двухлучевых приборах излучение от источника разделяется на два потока. Один из них проходит через исследуемый раствор, другой - через раствор сравнения. Оба оптических пути должны быть идентичны; для этого прибор снабжён двумя идентичными наборами светофильтров, детекторов, зеркал и линз. В современных приборах стремятся заменить пару деталей (например, детекторов) одной. Для регистрации сигнала, как правило, используют компенсационную схему, основанную на уравнивании фототоков регулированием щели.

Двухлучевые спектрофотометры построены по тому же принципу, что и фотоэлектроколориметры, но схемы их более сложны. К ним относятся SPECORD 250, SPEKOL 2000 и др.

В однолучевых приборах излучение от источника проходит только через кювету сравнения или кювету с исследуемым раствором поочередно (например, SPECORD 40, СФ-46).

Однолучевой спектрофотометр СФ-46 (рисунок 1.2) со встроенной микропроцессорной системой предназначен для измерения коэффициента пропускания и оптической плотности жидкостей и твёрдых веществ в области 190...1100 нм. Диспергирующим элементом для сканирования излучения по длине волны служит дифракционная решётка.

1 - дифракционная решетка; 2 и 6 - выходная и входная щели; 3 - линза; 4 - светочувствительная линза; 5 - поворотное зеркало; 7 - светофильтр; 8 - система зеркал (сферических и плоских); 9 и 9" - источники излучения; 10 - плоскоповоротное зеркало; 11 и 12 - светочувствительные фотоэлементы

Рисунок 1.2 Блок-схема спектрофотометра СФ-46.

Источниками сплошного излучения, обеспечивающими работу прибора в широком диапазоне длин волн, служат дейтериевая лампа (область 186...350 нм) и лампа накаливания (320...1100 нм). Приёмниками излучения (болометрами) служат соответственно сурьмяно-цезиевый (в области 186...650 нм) и кислородно цезиевый (в области 600...1100 нм) фотоэлементы.

Техническая характеристика прибора:

* диапазон измерений коэффициента пропускания 3...100 %;

* абсолютная погрешность измерения коэффициента пропускания 1 %;

* стандартное отклонение пропускания, не более 0,1 %.

Кроме первичных оптических характеристик исследуемых веществ (коэффициента пропускания и оптической плотности), конструкция спектрофотометра СФ-46 позволяет определить концентрацию анализируемых веществ (с помощью микропроцессорной системы), а также скорость изменения оптической плотности, что важно для изучения кинетики химических реакций в растворах.

2 . ЛЮМИНЕСЦЕНТНЫЕ МЕТОДЫ АНАЛИЗА

Люминесцентный анализ - это исследование свечения атомов, молекул и других частиц, которые возникают в результате электронного перехода при возвращении из возбужденного состояния в основное.

Исследуемые молекулы приводят в состояние оптического возбуждения, а затем регистрируют интенсивность люминесценции, возникающей в результате испускания возбужденными молекулами квантов света при возвращении молекул в основное состояние. Некоторые вещества обладают люминесцентными свойствами, некоторые вещества могут люминесцировать после обработки специальными реактивами. Возбуждение атомов может осуществляться в результате химических реакций (хемилюминесценция), протекания тока (электролюминесценция), поглощения света (флуоресценция) под воздействием ультрафиолетовых (фотолюминесценциях), рентгеновских (ренгенолюминесценция) и радиоактивных (радиолюминесценция) лучей.

Люминесценция - один из самых чувствительных методов анализа - применяется для определения следовых количеств элементов. В отличие от спектрофотометрии, где измеряют разность двух сигналов (I 0 и I), в люминесценции измеряют сам сигнал, и предел обнаружения зависит от интенсивности источника и чувствительности детектора. Метод люминесценции позволяет определять 10...10 - 4 мкг?см 3 вещества.

При резонансной люминесценции квант излучения, испускаемый частицей, равен поглощенному кванту (рисунок 2.1, а). Резонансная люминесценция характерна преимущественно для атомов, а также для простейших молекул, находящихся в газообразном состоянии при низких давлениях.

При этом выделяют особый вид резонансной люминесценции -- атомную флуоресценцию, т. е.свечение атомов в газовой фазе, возбуждаемое световыми квантами.

Возбужденная частица при взаимодействии с окружающими частицами может передать последним часть энергии в виде тепла и перейти на уровень 2 (рисунок 2.1, б).

a) Резонансная б) Спонтанная в) Вынужденная

Рисунок 2.1 Виды люминесценции по механизму элементарных процессов

При резонансной и спонтанной люминесценции вероятность возвращения частиц из возбужденного состояния в основное определяется внутренними свойствами частиц и не зависит от температуры. Люминесценция, возникающая при переходе частицы с возбужденного уровня 2 на основной уровень, называется спонтанной. Уровень испускания 2 лежит ниже уровня 3 и поэтому излучаемый квант оказывается меньше поглощенного. Спонтанная люминесценция характерна для паров и растворов сложных молекул

В ряде случаев возбужденная частица, прежде чем перейти на излучательный уровень 2, оказывается на промежуточном метастабильном уровне 4, непосредственный переход с которого на основной уровень является запрещенным (рисунок 2.1, в). Для перехода на излучательный уровень 2 частице необходимо сообщить дополнительную энергию в виде тепла или света.

Люминесценция, отвечающая такому механизму, называется вынужденной, и очевидно, что длительность свечения частиц в этом случае будет существенно зависеть от температуры.

Вынужденная люминесценция характерна для сложных органических молекул, находящихся при низкой температуре или помещенных в вязкие или стеклообразные среды (желатина, полимерные пленки, сахарные леденцы). У таких молекул метастабильным обычно является триплетный уровень.

Методы, основанные на собственной люминесценции веществ, исключительно селективны в отличие от методов определения элементов, использующих органические реагенты. Избирательность люминесцентного анализа можно повысить, варьируя экспериментальные условия (длину волны возбуждения и регистрации сигнала, время наблюдения в фосфоресцентных методах, химические параметры, например рН раствора, температуру и т.д.).

Люминесценцию широко применяют для определения органических веществ (например, витамины, лекарства, наркотики). В неорганическом анализе люминесцентный анализ используют в основном для определения редкоземельных элементов, а также малых количеств примесей в полупроводниковых материалах.

Отечественная промышленность выпускает Флюорат-02. Анализатор жидкости Флюорат-02-2М (далее - анализатор) предназначен для измерения массовой концентрации неорганических и органических примесей в воде, а также воздухе, почве, технических материалах, продуктах питания.

Область применения анализатора - аналитический контроль объектов окружающей среды; санитарный контроль и контроль технологических процессов. Анализатор может быть использован в качестве детектора в хроматографии.

Устройство и работа анализатора. Принцип работы анализатора иллюстрируется оптической (рисунок 2.2) и структурной (рисунок 2.3) схемами.

Оптическая схема анализатора (рисунок 2.2) может быть условно разбита на три канала: опорный (возбуждения); регистрации люминесценции и пропускания (фотометрический).

В опорном канале излучение ксеноновой лампы 1, работающей в импульсном режиме, проходит через систему зеркал (два прямых 2, 4 и одно сферическое 3), светофильтр 5, выделяющий спектральную область возбуждения, отражается от светоделительной пластины 6 и попадает на приёмник излучения 7 опорного канала.

1 - источник света; 2 - 4 - система зеркал канала возбуждения; 5 - светофильтр канала возбуждения; 6 - светоделительная пластина опорного канала; 7 - фотоприёмник опорного канала; 8 - фотоприёмник канала регистрации; 10, 12 - фокусирующие линзы канала регистрации; 11 - светофильтр канала регистрации; 13 - кювета; 14 - светоделительная пластина канала пропускания; 15 - фокусирующее зеркало канала пропускания; 16 - фотоприёмник канала пропускания

Рисунок 2.2 Оптическая схема анализатора Флюорат-02-2М.

Электрический сигнал от этого приёмника называется сигналом сравнения и служит для учёта нестабильности работы лампы от импульса к импульсу, а также для запуска импульсной электронной схемы регистрации и обработки сигналов.

В канале пропускания излучение ксеноновой лампы 1 проходит через систему зеркал 2 - 4, светофильтр канала возбуждения 5, светоделительную пластину 6, кварцевую кювету с образцом 13 и, отражаясь от светоделительной пластины 14 и зеркала 15, попадает на приёмник излучения 16 канала пропускания. Электрический сигнал от этого приёмника зависит от оптической плотности образца и называется сигналом пропускания.

Под действием излучения ксеноновой лампы в кювете с образцом происходит возбуждение люминесценции растворённых веществ. В канале регистрации излучение люминесцирующих компонентов пробы из кварцевой кюветы 13 проходит через собирающую линзу 12, светофильтр 11, выделяющий спектральную область регистрации, фокусирующую линзу 10 и попадает на приёмник излучения канала регистрации люминесценции 8 (ФЭУ). Электрический сигнал этого приёмника зависит от концентрации и состава определяемых веществ в растворе и называется сигналом люминесценции.

Структурная схема анализатора (рисунок 2.3) состоит из низковольтного блока питания, импульсного источника света, измерительного блока, включающего в себя фотоприёмники каналов опорного и пропускания, блока питания ФЭУ, самого ФЭУ, микропроцессорного контроллера и пульта управления с жидкокристаллическим графическим дисплеем (далее ЖК-дисплей) и клавиатурой.

Низковольтный блок питания преобразует переменное напряжение сети в нестабилизированное постоянное напряжение 12. В (при питании от сети переменного тока 220 В; при питании от источника постоянного тока 12 В в преобразовании нет необходимости), а затем в постоянное стабилизированное напряжение (+5 В, +15 В, -15 В), необходимое для питания блока питания ФЭУ, измерительного блока и контроллера.

Импульсный источник света вырабатывает световые импульсы длительности 100 мкс с частотой, определяемой микропроцессорным контроллером (5 Гц или 4 Гц).

Рисунок 2.3 Структурная схема анализатора Флюорат-02-2М

Измерительный блок содержит приёмники излучения, служащие для преобразования световых сигналов в электрические сигналы пропускания и сравнения и осуществляет регистрацию сигналов, поступающих от этих приёмников и от ФЭУ.

Блок питания ФЭУ состоит из генератора высоковольтного напряжения и управляющего микропроцессора. Генератор вырабатывает высоковольтное (1 кВ) стабилизированное напряжение, необходимое для работы ФЭУ. Микропроцессор управляет установкой напряжения на ФЭУ (чувствительностью ФЭУ), работой электромеханической шторки и фиксирует состояние перегрузки ФЭУ.

Панель управления служит для выбора режимов работы прибора, ввода и вывода значений исходных параметров и результатов измерения на ЖК-дисплей.

Микропроцессорный контроллер обеспечивает выполнение команд, поступающих с клавиатуры, хранение в оперативной памяти значений исходных параметров, контролирует работу всех систем, управляет запуском импульсного источника света, обменом данными по каналу RS-232, выводом данных и сообщений об ошибках на ЖК-дисплей.

Общий вид анализатора приведён на рисунке 2.4.

1 - клавиатура; 2 - жидкокристаллический дисплей; 3 - флажок, замыкающий датчик крышки; 4 - крышка кюветного отделения; 5 - сдвижная заслонка; 6 - кюветное отделение

Рисунок 2.4 Общий вид анализатора Флюорат-02-2М

3 . ИНФРАКРАСНАЯ СПЕТРОСКОПИЯ

Из всех свойств органических соединений ИК-спектр дает наибольшую информацию о структуре соединения. Как и масс-спектр, инфракрасный спектр характерен для данного органического соединения и используется для установления идентичности двух соединений, определения строения нового соединений. Исследуя колебательные спектры, можно установить пространственное строение молекул, охарактеризовать природу связи (полярность поляризуемость, кратность).

Рисунок 3.1 Схема энергетических уровней молекулы по электронным, колебательным и вращательным состояниям

Молекула постоянно колеблется: ее связи растягиваются (и сокращаются) и, кроме того, изгибаются относительно друг друга. Изменения колебаний молекул вызывает поглощение в инфракрасной области, лежащей за пределами красной области видимого спектра. Для указания положения поглощения в инфракрасной области используют длину волны или чаще частоту, которую выражают не в герцах, а в волновых числах.

Волновое число и энергия связаны между собой следующими соотношениями: 1 см -1 = 2,858 кал/моль = 1,986 · 10 -16 эрг/молекула=1,24 · 10 -4 эВ/моль.

Волновое число? это число волн, укладывающихся в 1 см (это величина обратная длине волны в сантиметрах).

Молекула в основном и возбужденном состояниях обладает некоторым набором дискретных энергетических уровней, которые квантованы. Наибольшая разность энергий между основным и возбужденным уровнем имеет место для электронных состояний. На них накладываются колебательные уровни, которые обусловлены различными типами колебаний в молекуле (растягивание-сжатие связей, изменение углов между ними). Имеются и еще более близко расположенные уровни, называемые вращательными. Все эти энергетические состояния молекулы можно представить схемой энергетических уровней (рисунок 3.2).

Низкие по энергии переходы между колебательными уровнями в пределах одного электронного уровня происходят в результате поглощения излучения в инфракрасной области и исследуются методами инфракрасной спектроскопии.

Инфракрасные спектры обычно (но не всегда) записываются в виде зависимости процентного пропускания от волнового числа (в см- 1). Современный двухлучевой спектрофотометр обычно регистрирует поглощенное инфракрасное излучение в виде процента интенсивности непоглощенного света при данной длине волны. Поглощение или оптическая плотность связано с пропусканием уравнением:

А= -lg (I/I 0) (3.1)

Пропускание(Т) = 100 %, при А= 0 и равно отношению I/I 0 .

Принципиальная схема любого спектрального прибора (рис. 3.2) состоит из трех основных частей: осветительной I, спектральной(оптической) II, и приемно-регистрирующей III. В осветительную часть входят источник света 1 и конденсорные линзы или зеркала 2, равномерно освещающие входную щель прибора 4. В кювете 3 устанавливается исследуемый и эталонный образец.

Спектральная часть (монохроматор) содержит входной объектив 5 и диспергирующую систему6, выходной объектив 7. В фокальной плоскости 8 устанавливается регистрирующее устройство 9.

Рисунок 3.2 Принципиальная схема спектрального прибора

Источники излучения. В видимой и близкой ИК-областях применяются газонаполненные лампы с вольфрамовой нитью, в коротковолновой и средней областях - штифт Нерста, силитовый стержень (глобар). Изготавливается он из карбида кремния, диаметр его равен 4-6 мм; рабочее напряжение 35-50 В, сила тока 3-5 А, мощность излучения 150 - 250 Вт, температура1200 °С.

Монохроматор - оптический прибор, позволяющий производить измерения в широкой спектральной области и в очень узком интервале длин волн. Основным элементом монохроматора является диспергирующая система в виде призмы или дифракционной решетки. Фокусирующими элементами служат зеркала, т. к. невозможно изготовить линзы, которые были бы прозрачны в обычно используемом инфракрасном диапазоне частот.

Приемники излучения подразделяются на тепловые и фотоэлектрические.

В ИК-областях спектра в качестве приемника применяются фотоэлементы, фотосопротивления, болометры. Принцип действия болометра заключается в из-менении электрического сопротивления термочувствительного элемента при нагревании. Инфракрасное излучение, попадающее на болометр, вызывает слабый ток малого напряжения, который усиливается с помощью усилителя переменного тока с последующей записью спектральной кривой.

Регистрация спектров поглощения. Обычно спектр записывается с по-мощью самописца в координатах k= f(л) или k= f(н). Спектрофотометры по способу записи разделяются на однолучевые и двухлучевые. Современные двухлучевые спектрофотометры позволяют автоматически зарегистрировать инфракрасные спектры поглощения твердых, жидких веществ в процентах пропускания в различном диапазоне частот. Так, например, спектрофотометр ИКС-29 работает в интервале частот 4200-400 см- 1

Градуировка обычно производится по эталонным спектрам (нормалям), волновые числа, максимумы, полосы поглощения которых точно известны (например, полистирол). Спектрофотометры - оптические приборы, позволяющие измерить отношение интенсивности двух световых потоков в зависимости от длины волны. Для повышения качества регистрации спектра поглощения исследуемым веществом желательно устранить сигнал фона- поглощения атмосферными газами, окнами кюветы, где находится образец, и т. д. С этой целью в спектрофотометре используется двухлучевая схема, позволяющая компенсировать фоновый сигнал(рисунок 3.3).

Рисунок 3.3. Принципиальная схема двухлучевого спектрофотометра

ИК-излучение от источника 1 делится на два пучка системой зеркал 2. Рабочий пучок проходит через кювету с образцом 3, а пучок сравнения - через компенсатор фона 4. С помощью дискомодулятора5 пучки попеременно направляются на входную щель монохроматора6 и через нее- на дифракционную решетку 7, которая разлагает излучение в спектр и направляет его на выходную щель 8. Монохроматическое изображение щели попадает на приемник - висмутовый болометр 9. В отсутствии исследуемого образца интенсивности рабочего пучка и пучка сравнения одинаковы, в приемнике сигналы от этих пучков вычитаются; на выходе сигнал отсутствует. При поглощении рабочего пучка исследуемым веществом на приемник попадают лучи различной интенсивности, в результате чего в приемнике возникает переменный сигнал. После усиления и преобразования сигнала приводится в движение перо самописца 10.

При медленном повороте решетки щель 8 последовательно вырезает узкие участки спектра, и на ленте самописца вычерчивается кривая зависимости пропускания от длины волны.

4 . АТОМНО-ЭМИССИОННЫЕ МЕТОДЫ АНАЛИЗА

4.1 Общая характеристика метода

Вметоде атомно-эмиссионной спектроскопииизмеряется испусканиеизлучения оптического диапазона возбужденными свободными атомами.Ватомной эмиссии, как и в атомной абсорбции, для перевода определяемого элемента в состояние атомного пара используется источник высокой температуры -- атомизатор. Одновременно здесь он является и источником возбужденияатомов. Таким образом, в атомно-эмиссионном методе возбуждение атомов имеет термическийхарактер.

Атомы, находящиеся в возбужденных состояниях, могут испускать фотоны множества различных частот, давая многолинейчатый спектр (см. диаграмму справа). Переходы, завершающиеся в основном состоянии,составляют главную (резонансную) серию линий (соответственно, в абсорбционном спектре резонансные линии соответствуют переходам из основного состояния). Наблюдаемое число линий в атомных эмиссионных спектрах обычно гораздо больше, чем в абсорбционных. Действительно, интенсивность 1у спектральной линии с частотой vy= |Е,--Ej|/h прямо пропорциональна заселенности N) того энергетического уровня, с которого совершается переход:

В условиях термодинамического равновесия заселенность основного состояния намного выше, чем возбужденных, поэтому в атомных абсорбционных спектрах наблюдаются только линии, соответствующие переходам из основного состояния (резонансные). Для процессов же эмиссии переходы из основного состояния, очевидно, невозможны. Эмиссионные линии соответствуют переходам из различных возбужденных состояний (заселенности которых, как правило, соизмеримы между собой) в состояния с меньшими энергиями. Однако и в эмиссионных спектрах главная серия обычно имеет большую интенсивность, чем побочные.

4.2 Атомизаторы в атомной эмиссии

Рассмотрим основные типы атомизаторов, используемых в атомно-эмиссионном анализе, в порядке возрастания их рабочих температур.

Пламя. Диапазон их рабочих температур от 1500 до 3000°С. При столь низких температурах в заметной степени возбуждаются лишь атомы щелочных и щелочноземельных элементов (начиная с Са). Для определения этих элементов метод пламенной атомно-эмиссионной фотометрии является одним из лучших. Анализируемый раствор непрерывно распыляется в пламя с помощью форсунки -- точно так же, как и в атомно-абсорбционном анализе с пламенной атомизацией.

Электрическая дуга. Используется дуговой разряд как постоянного, так и переменного тока. Рабочие температуры составляют от 3000 до 7000°С. Таких температур достаточно для атомизации и возбуждения большинства элементов, за исключением некоторых очень трудно возбудимых неметаллов (например, галогенов). Анализируемый твердый образец используется в качестве одного из электродов (например, при анализе сплавов) или наносится в твердом виде на один из электродов, образующих дугу (обычно используются графитовые электроды). При анализе растворов их предварительно выпаривают с твердым порошкообразным коллектором (обычно также графитовым). Серьезный недостаток дугового атомизатора (особенно постоянного тока) -- его низкая стабильность.

Высоковольтная искра. Отличительная особенность этого источника атомизации -- отсутствие термодинамического равновесия между находящимися в нем частицами (атомами, ионами, свободными электронами). Поэтому говорить в целом о температуре искрового разряда достаточно сложно. Его "эффективная" температура атомизации достигает 10000-12000°С. Высоковольтная искра является одним из самых высокотемпературных источников атомизации. Техническая реализация анализа в дуговом и искровом разрядах весьма схожа. Очень часто в спектральных приборах для генерации дуги и искры используют одно и то же устройство.

Плазменные атомизаторы. Это -- самые современные типы атомизаторов. Наилучшими аналитическими характеристиками обладает высокочастотная индуктивно связанная аргоновая плазма (ИСП). Источник ИСП представляет собой плазменную горелку достаточно сложной конструкции, состоящей из трех концентрических кварцевых трубок. В них с большой скоростью подаются потоки аргона. Самый внутренний служит для впрыскивания раствора пробы, промежуточный является плазмообразующим, а внешний служит для охлаждения плазмы; расход аргона в этом потоке особенно велик (10-20 л/мин). Аргоновая плазма инициируется ("поджигается") искровым разрядом, а затем стабилизируется с помощью высокочастотной индуктивной катушки, окружающей верхнюю часть горелки; при этом возникает сильный кольцевой ток ионов Аг + . Рабочая температура ИСП составляет порядка 10000°С.

4.3 Аппаратура в атомно-эмиссионном анализе

Принципиальная схема атомно-эмиссионного спектрометра приведена на рисунке 4.1.

Рисунок 4.1. Принципиальная схема атомно-эмиссионного спектрометра

В отличие от рассмотренных ранее схем абсорбционных спектрометров, здесь, естественно, отсутствует внешний источник излучения. Другая особенность - возможное использование вместо монохроматора полихроматора-- устройства, обеспечивающего возможность одновременнойрегистрации множества спектральных линий и -- как следствие -- возможность проведения экспрессного многоэлементного анализа. В качестве монохроматоров и полихроматоров обычно применяются призмы или дифракционные решетки. При использовании их как монохроматоров на выходе имеется щель, выделяющая узкую спектральную область; у полихроматоров такая щель отсутствует. При пламенной атомизации ввиду малого числа наблюдаемых в этих условиях эмиссионных линий возможно и использование монохроматоров низкого разрешения -- светофильтров.

В качестве детекторовв случае, если используются монохроматоры, применяют фотоэлектрические преобразователитех же типов, что и в других оптических методах анализа (фотоэлементы, фотоэлектронные умножители, фотодиоды). При использовании полихроматоров применяют набор таких детекторов, обычно фотодиодов ("диодная линейка"). Однако в этом случае используют и другие способы регистрации. Наиболее распространенный из них -- фотографический(фотохимический), при котором эмиссионный спектр фотографируют на фотопластинку. Интенсивность спектральной линии в этом случае находят, измеряя почернение (оптическую плотность) изображения линии на фотопластинке. Для массовых полуколичественных анализов применяют и приборы с визуальной индикацией (стилоскопы).

Рассмотрим принципиальную схему пламенного фотометра. Эмиссионный пламенный фотометр состоит из трёх основных узлов: распылителя и горелки, светофильтра или монохроматора и измерительного устройства; принципиальная схема прибора показана на рисунке 4.2.

Анализируемый раствор 1 превращают в аэрозоль при помощи распылителя 2 (работающего под действием сжатого воздуха или кислорода) и вводят в пламя 3 горючей смеси воздуха или кислорода с водородом (иногда с каким-нибудь углеводородом: ацетиленом, пропаном, бутаном). Точность и чувствительность пламенно-фотометрических определений в значительной степени зависят от степени распыления раствора и работы горелки. Светофильтр (или монохроматор) 4 выделяет из спектра определённую спектральную линию, используемую для измерения. Фотоэлемент 5 (или фотоумножитель), а также гальванометр 6 служат для измерения интенсивности спектральной линии.

1 - анализируемый раствор; 2 - распылитель;3 - пламя горелки; 4 - светофильтр (или монохроматор); 5 - фотоэлемент; 6 - гальвонометр

Рисунок 4.2. Схема эмиссионного пламенного фотометра.

Большое значение в этом методе имеет температура пламени. При сжигании смесей воздуха с пропаном или бутаном достигается температура 1700...1900 °С и возбуждаются только атомы щелочных металлов. Для определения щёлочноземельных металлов необходимо пламя смеси воздуха с ацетиленом, дающее температуру около 2300 °С. Универсальным считают пламя смеси кислорода с водородом (2500 °С) или с ацетиленом (3150 °С).

В лабораторной практике используют как пламенные фотометры со светофильтрами, так и спектрофотометры для пламенной фотометрии.

Пламенные фотометры со светофильтрами служат главным образом для определения в растворах калия, натрия, кальция и иногда лития, т.е. для анализа объектов простого состава. Работают они обычно на низкотемпературном пламени смесей горючих газов с воздухом; распылители их снабжены специальными камерами для удержания крупных капелек аэрозоля, не испаряющихся в пламени. В нашей стране выпускаются пламенные фотометры марок ФПФ-58, ФПЛ-1, ПФМ, ФЛАФО-4 .

Спектрофотометры для пламенной фотометрии более чувствительны и обеспечивают высокую монохроматизацию излучения. Они снабжены специальными горелками для сжигания смесей горючих газов с кислородом, причём газы смешиваются у выхода из сопла, анализируемый раствор впрыскивается непосредственно в пламя. Примером спектрофотометра для пламенной фотометрии может служить прибор ПАЖ-1.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Гармаш, А.В. Введение в спектроскопические методы анализа.Оптические методы анализа. - Москва, 1995.

2. Якунина, И.В. Методы и приборы контроля окружающей среды. Экологический мониторинг./ И.В. Якунина, Н.С. Попов - Тамбов: ТГТУ, 2009.

3. Сотникова, Е.В. Аналитические методы экологического мониторинга./Е.В. Сотникова, Н.Ю. Калпина, Е.В. Ряховская, Б.В. Смирин - Москва: МГТУ "Мами", 2011.

4. Саксонов, М.Н. Экологический мониторинг нефтегазовой отрасли. Физико-химические и биологические методы./М.Н. Саксонов, А.Д. Абалаков, Л.В. Данько, О.А. Бархатова, А.Э. Балаян, Д.И. Стом - Иркутск: Иркутский государственный университет, 2005.

5. Фёдорова, Э.И. Инструментальные методы анализа органических соединений[Электронный ресурс] : учебное пособие: самост. учеб. электрон. изд. / Э. И. Фёдорова; Сыкт. лесн. ин-т. - Электрон. дан. - Сыктывкар: СЛИ, 2013. - Режим доступа: http://lib.sfi.komi.com.

Размещено на Allbest.ru

...

Подобные документы

    Цели и задачи аналитического контроля на предприятии. Деятельность заводской лаборатории по проверке качества. Характеристика характеристика физико-химических методов анализа. Основные параметры в хроматографических и титриметрических методах анализа.

    реферат , добавлен 28.12.2009

    Назначение автоматизированных районных конденсатных станций. Методы очистки конденсата с целью снижения содержания нефтепродуктов. Обескремнивание воды в водоочистках промышленных ТЭЦ высокого давления. Сущность колориметрического метода анализа раствора.

    контрольная работа , добавлен 17.01.2010

    Понятие хроматографии как разделения сложных смесей на составные компоненты между двумя несмешивающимися фазами. Классификация хроматографических методов анализа, исследование с их помощью пищевых продуктов. Проникающая и аффинная хроматография.

    курсовая работа , добавлен 03.06.2015

    Описание метода атомно-силовой микроскопии, его достоинства и недостатки. Схематическое устройство атомно-силового микроскопа. Особенности осуществления процесса сканирования. Применение атомно-силовой микроскопии для определения морфологии тонких пленок.

    реферат , добавлен 09.12.2015

    Метод атомно-абсорбционного спектрального анализа и его достоинства. Контроль технологических процессов. Термическое испарение сухих остатков растворов. Наложение излучения атомизатора на излучение источника света. Коэффициент диффузии атомов в газах.

    доклад , добавлен 10.11.2008

    Понятие термодинамико-топологического анализа, его сущность и особенности, сферы использования и эффективность. Принцип и порядок осуществления термодинамико-топологического анализа, его этапы и характеристика. Изучение эволюции тройной биазеотропии.

    реферат , добавлен 15.02.2009

    Принцип поляриметрического метода. Состав, химические и физические свойства, токсикологическое воздействие сахара. Характеристика методов анализа вещества: рефрактометрический, антроновый, газохроматографический. Оценивание погрешности измерений.

    курсовая работа , добавлен 29.02.2016

    Главный подход к исследованию сложных объектов - системный анализ. Практическая реализация системного анализа - структурный системный анализ, его принципы и методы. Истоки структурного моделирования. Классы моделей структурного системного анализа.

    реферат , добавлен 18.02.2009

    Огнеупорные материалы и их свойства, классификация и условия эффективного использования. Современные физико-химические методы анализа. Химические реактивы, основное и вспомогательное оборудование. Стандартные методы анализа динасовых огнеупоров.

    дипломная работа , добавлен 21.01.2016

    Теоретические основы аналитического контроля качества продукции. Автоматизация аналитического контроля продукции химико-технологических производств. Оптические методы химических исследований. Электрохимические методы анализа. Хроматографический метод.

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа:

    Эмиссионный спектральный анализ - физический метод, основанный на изучении эмиссионных спектров паров анализируемого вещества (спектров испускания или излучения), возникающих под влиянием сильных источников возбуждений (электрической дуги, высоковольтной искры); этот метод дает возможность определять элементный состав вещества, т. е. судить о том, какие химические элементы входят в состав данного вещества.

    Пламенная спектрофотометрия, или фотометрия пламени, являющаяся разновидностью эмиссионного спектрального анализа, основана на изучении эмиссионных спектров элементов анализируемого вещества, возникающих под влиянием мягких источников возбуждения. В этом методе анализируемый раствор распыляют в пламени. Этот метод дает возможность судить о содержании в анализируемом образце главным образом щелочных и щелочноземельных металлов, а также некоторых других элементов, например галлия, индия, таллия, свинца, марганца, меди, фосфора.

    Примечание. Кроме эмиссионной фотометрии пламени применяют абсорбнионную, называемую также атомно-абсорбционной спектроскопией или атомно-абсорбционной спектрофотометрией. Она основана на способности свободных атомов металла в газах пламени поглощать световую энергию при характерных для каждого элемента длинах волн. Этим методом можно определять сурьму, висмут, селен, цинк, ртуть и некоторые другие элементы, не определяемые методом эмиссионной фотометрии пламени.

    Абсорбционная спектроскопия основана на изучении спектров поглощения вещества, являющихся его индивидуальной характеристикой. Различают спектрофотометрический метод, основанный на определении спектра поглощения или измерении светопоглощения (как в ультрафиолетовой, так и в видимой и инфракрасной областях спектра) при строго определенной длине волны (монохроматическое излучение), которая соответствует максимуму кривой поглощения данного исследуемого вещества, а также фотоколориметрический метод, основанный на определении спектра поглощения или измерении светопоглощения в видимом участке спектра.

    В отличие от спектрофотометрии в фотоколориметрическом методе применяют «белый» свет или «белый» свет, предварительно пропущенный через широкополосные светофильтры.

    Метод анализа по спектрам комбинационного рассеяния света. В методе использовано явление, открытое одновременно советскими физиками Г. С. Ландсбергом и Л. И. Мандельштамом и индийским физиком Ч. В. Раманом. Это явление связано с поглощением веществом монохроматического излучения и последующим испусканием нового излучения, отличающегося длиной волны от поглощенного.

    Турбидиметрия основана на измерении интенсивности света, поглощаемого неокрашенной суспензией твердого вещества. В турбидиметрии интенсивность света, поглощенного раствором или прошедшего через него, измеряют так же, как в фотоколориметрии окрашенных растворов.

    Нефелометрия основана на измерении интенсивности света, отраженного или рассеянного окрашенной или неокрашенной суспензией твердого вещества (взвешенного в данной среде осадка).

    Люминесцентный, или флуоресцентный метод анализа основан на измерении интенсивности излучаемого веществами видимого света (флуоресценции) при облучении их ультрафиолетовыми лучами.

10)К оптическим методам анализа также относятся рефрактометрический метод, основанный на измерении коэффициента преломления, и полярометрический, основанный на изучении вращения плоскости поляризации.

Тёмные линии на спектральных полосках были замечены давно, но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г. Кирхгоф и Р. Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а в 1861 году - рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов.

Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Применение

В последнее время, наибольшее распространение получили эмиссионные и масс-спектрометрические методы спектрального анализа, основанные на возбуждении атомов и их ионизации в аргоновой плазме индукционных разрядов, а также в лазерной искре.

Спектральный анализ - чувствительный метод и широко применяется в аналитической химии, астрофизике, металлургии, машиностроении, геологической разведке и других отраслях науки.

В теории обработки сигналов, спектральный анализ также означает анализ распределения энергии сигнала (например, звукового) по частотам, волновым числам и т. п.

План лекции: 1. Классификация спектральных методов анализа

2. Теоретические основы анализа

3. Основные элементы спектральных приборов и их назначение.

Цель лекции: Ознокомить с теорией спектрального анализа и обьяснить роль физико-химических методов анализа в решении проблем экологии

Конспект лекции:

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия её с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементарный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения.

Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет.

Темные линии появляются, когда электроны, находящиеся на нижних энергетических уровнях атома, под воздействием радиации от источника света одномоментно поднимаются на более высокий уровень, поглощая при этом световые волны определенной длины, и сразу после этого падают обратно на прежний уровень, излучая волны этой же длины обратно - но так как это излучение рассеивается равномерно во всех направлениях, в отличие от направленного излучения от начального источника, на спектрограмме на спектрах видны тёмные линии в месте/местах, соответствующих данной длине/длинам волн. Эти длины волн отличаются для каждого вещества и определяются разницей в энергии между электронными энергетическими уровнями в атомах этого вещества.

Количество таких линий для конкретного вещества равно количеству возможных вариантов переходов электронов между энергетическими уровнями; например, если в атомах конкретного вещества электроны расположены на двух уровнях, возможен лишь один вариант перехода - с внутреннего уровня на внешний (и обратно), и на спектрограмме для данного вещества будет одна тёмная линия. Если электронных энергетических уровней три, то возможных вариантов перехода уже три (1-2, 2-3, 1-3), и тёмных линий на спектрограмме будет тоже три.

Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов.

Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Спекроскопические методы представляют собой наиболее широкую группу, поскольку охватывают огромнейший диапазон длин волн электромагнитных излучений. Методы анализа могут быт основаны как на поглощении излучения анализирующим веществом, так и на регистрации его излучения.

Основные методы, которые применяются в той или иной мере или могли бы применяться для оценки загрязнения объектов природной среды.

Спектральные методы анализа - это методы, основанные на определении химического состава и строения веществ по их спектру. Спектром вещества называют упорядоченное по длинам волн электромагнитное излучение, испускаемое, поглощаемое, рассеиваемое или преломляемое веществом.

Методы, основанные на получении и изучении спектров испускания (эмиссии) электромагнитного излучения (энергии), называют эмиссионными, поглощения (абсорбции) - абсорбционными, рассеяния - методами рассеяния, преломления - рефракционными. Спектр вещества получают, воздействуя на него температурой, потоком электронов, световым потоком (электромагнитной энергией) с определённой длиной волны (частоты излучения) и другими способами. При определённой величине энергии воздействия вещество способно перейти в возбуждённое состояние. При этом происходят процессы, приводящие к появлению в спектре излучения с определённой длиной волны. Излучение, поглощение, рассеяние или рефракция электромагнитного излучения может рассматриваться как аналитический сигнал, несущий информацию о качественном и количественном составе вещества или о его структуре. Частота (длина волны) излучения определяется составом исследуемого вещества, а интенсивность излучения пропорциональна числу частиц, вызвавших его появление, т.е. количеству вещества или компонента смеси. Каждый из аналитических методов обычно использует не полный спектр вещества, охватывающий диапазон длин волн от рентгеновских излучений до радиоволн, а только определённую его часть.

Спектральные методы обычно различают по диапазону длин волн спектра, являющемуся рабочим для данного метода: ультрафиолетовые (УФ), рентгеновские, инфракрасные (ИК), микроволновые и т.д. Методы, работающие в УФ, видимом и ИК диапазоне называют оптическими. Они больше всего применяются в спектральных методах вследствие сравнительной простоты оборудования для получения и регистрации спектра.

Контрольные вопросы:

1. Спектры способы их получения, особенности, классификация

2. Использование для аналитических целей.

Тема самостоятельной работы студентов (СРС):

1. Физические методы анализа.

2. Использование компьютера в аналитической химии

Литература:

1. Зяблов А.Н. Аналитическая химия. Воронеж, 2006. –С. 75

2. Алемасова А.С., Луговой К.С. Экологическая аналитическая химия. Донецк. 2010.

Спектральный анализ был открыт в 1859 году Бунзеном и Кирхгофом, профессорами химии и физики одного из старейших и престижных учебных заведений Германии - Гейдельбергского университета имени Рупрехта и Карла. Открытие оптического метода исследования химического состава тел и их физического состояния содействовало выявлению новых химических элементов (индия, цезия, рубидия, гелия, таллия и галлия), возникновению астрофизики и стало своеобразным прорывом в различных направлениях научно-технического прогресса.

Прорыв в области науки и техники

Спектральный анализ значительно расширил области научного исследования, что позволило достигнуть более точных определений качества частиц и атомов, понять их взаимные соотношения и установить, чем обусловлено, что тела излучают световую энергию. Все это стало прорывом в области науки и техники, поскольку их дальнейшее развитие немыслимо без четкого знания химического состава веществ, являющихся объектами деятельности человека. Сегодня уже недостаточно ограничиться лишь определением примесей, к методам анализа веществ предъявляются новые требования. Так, при производстве полимерных материалов очень важна сверхвысокая чистота концентрации примесей в исходных мономерах, поскольку качество готовых полимеров нередко зависит именно от нее.

Возможности нового оптического метода

Повышенные требования предъявляются и к разработке методов, обеспечивающих точность и высокую скорость анализа. Химические методы анализа не всегда достаточны в этих целях, рядом ценных характеристик обладают физико-химические и физические способы определения химического состава. Среди них ведущее место занимает спектральный анализ, являющийся совокупностью методов количественного и качественного определения состава рассматриваемого объекта, основанную на исследовании спектров взаимодействия материи и излучения. Соответственно, сюда включаются также спектры акустических волн, электромагнитного излучения, распределения по энергиям и массам элементарных частиц. Благодаря спектральному анализу появилась возможность точно установить химический состав и температуру вещества, наличие магнитного поля и его напряженность, скорость движения и другие параметры. В основе метода заложено изучение строения света, излучаемого или поглощаемого анализируемым веществом. При запуске определенного пучка света на боковую грань трехгранной призмы составляющие белый свет лучи при преломлении создают на экране спектр, своеобразную радужную полоску, в которой все цвета всегда расположены в определенном неизменном порядке. Распространение света происходит в виде электромагнитных волн, определенная длина каждой из них соответствует одному из цветов радужной полосы. Определение химического состава материи по спектру очень схоже с методом нахождения преступника по отпечаткам пальцев. Линейчатым спектрам, как и узорам на пальцах, свойственна неповторимая индивидуальность. Благодаря этому и определяется химический состав. Спектральный анализ дает возможность обнаружить определенный компонент в составе сложного вещества, масса которого не выше 10-10. Это достаточно чувствительный метод. Для изучения спектров используются спектроскопы и спектрографы. В первых спектр рассматривают, а с помощью спектрографов его фотографируют. Полученный снимок называют спектрограммой.

Виды спектрального анализа

Выбор способа спектрального анализа во многом зависит от цели анализа и типов спектров. Так, для определения молекулярного и элементарного состава вещества применяются атомный и молекулярный анализы. В случае определения состава по спектрам испускания и поглощения используются эмиссионный и абсорбционный методы. При изучении изотопного состава объекта применим масс-спектрометрический анализ, осуществляемый по спектрам масс молекулярных или атомарных ионов.

Преимущества метода

Спектральный анализ определяет элементарный и молекулярный состав вещества, дает возможность провести качественное открытие отдельных элементов исследуемой пробы, а также получить количественное определение их концентраций. Близкие по химическим свойствам вещества очень трудно поддаются анализу химическими методами, но зато без проблем определяются спектрально. Это, например, смеси редкоземельных элементов или инертных газов. В настоящее время спектры всех атомов определены, и составлены их таблицы.

Области применения спектрального анализа

Лучше всего разработаны методики атомного спектрального анализа. Их используют для оценки самых разнообразных объектов в геологии, астрофизике, черной и цветной металлургии, химии, биологии, машиностроении и других отраслях науки и промышленности. В последнее время возрастает объем практического применения и молекулярного спектрального анализа. Его методы используются в химической, химико-фармацевтической и нефтеперерабатывающей промышленности для исследования органических веществ, реже и для неорганических соединений.

в научной среде позволило создать астрофизику. А в дальнейшем уже в новой отрасли удалось установить химический состав газовых облаков, звезд, Солнца, что совершенно невозможно было сделать с помощью других методов анализа. Данный способ также позволил найти по спектрам и многие другие физические характеристики этих объектов (давление, температуру, скорость движения, магнитную индукцию). Нашел применение спектральный анализ и в области криминалистики, с его помощью исследуются улики, найденные на месте преступления, определяется орудие убийства, раскрываются некоторые частности совершенного преступления.

Прогрессивные лабораторные методы диагностики

Широкое применение получил спектральный анализв медицине. Его используют для определения инородных веществ в организме человека, диагностирования, в том числе и онкологических заболеваний на ранней стадии их развития. Наличие или отсутствие многих заболеваний можно определить по лабораторному анализу крови. Чаще это болезни органов ЖКТ, мочеполовой сферы. Количество заболеваний, которые определяет спектральный анализ крови, постепенно увеличивается. Этот метод дает самую высокую точность при выявлении биохимических изменений в крови в случае сбоя в работе какого-либо органа человека. В ходе исследования специальными приборами регистрируются инфракрасные спектры поглощения, возникающие в результате колебательного движения молекул, сыворотки крови, и определяются любые отклонения ее молекулярного состава. Спектральным анализом проверяют также минеральный состав тела. Материалом для исследования в данном случае служат волосы. Любой дисбаланс, дефицит или избыток минералов часто связан с целым рядом заболеваний, таких как болезни крови, кожи, сердечно-сосудистой, пищеварительной системы, аллергия, нарушения развития и роста детей, снижение иммунитета, утомляемость и слабость. Подобные виды анализов считаются новейшими прогрессивными лабораторными методами диагностики.

Уникальность метода

Спектральный анализ на сегодняшний день нашел применение практически во всех наиболее существенных сферах человеческой деятельности: в промышленности, в медицине, в криминалистике и других отраслях. Он является важнейшим аспектом развития научного прогресса, а также уровня и качества жизни человека.

Под названием спектральный анализ мы понимаем физический метод анализа химического состава вещества, основанный на исследо­вании спектров испускания и поглощения атомов или молекул. Эти спектры определяются свойствами электронных оболочек атомов и мо­лекул, колебаниями атомных ядер в молекулах и вращением молекул, а также воздействием массы и структуры атомных ядер на положение энергетических уровней; кроме того они зависят от взаимодействия ато­мов и молекул с окружающей средой. В соответствии с этим спектраль­ный анализ использует широкий интервал длин волн - от рентгеновых до микрорадиоволн. В спектральный анализ не входят масс-спектроскс-пические методы анализа, как не относящиеся к области использования электромагнитных колебаний.
Задача ограничивается пределами оптических спектров. Однако и эта область достаточно широка, она охватывает вакуумную область ультрафиолетовых излучений, ультрафиолетовую, видимую и инфракрасную области спектра. В практике современный спектраль­ный анализ использует излучения с длиной волны примерно от 0,15 до 40-50 ?.
Различные типы спектрального анализа следует рассматривать с трех точек зрения.
1.По решаемым задачам:

  1. элементный, когда устанавливается состав пробы по элементам;
  2. изотопный, когда устанавливается состав пробы по изо­топам;
  3. молекулярный, когда устанавливается молекулярный состав пробы;
  4. структурный, когда устанавливаются все; или основные структурные составляющие молекулярного соединения.

2.По применяемым методам:

  1. эмиссионный, использующий спектры излучения, главным образом атомов. Однако возможен эмиссионный анализ и молеку­лярного состава, например в случае определения состава радика­лов в пламенах и газовом разряде. Особым случаем эмиссионного анализа является люминесцентный анализ;
  2. абсорбционный, использующий спектры поглощения, глав­ным образом молекул и их структурных частей; возможен анализ по спектрам поглощения атомов;
  3. комбинационный, использующий спектры комбинационного рассеяния твердых, жидких и газообразных проб, возбуждаемые монохроматическим излучением, обычно - светом отдельных линий ртутной лампы;
  4. люминесцентный, использующий спектры люминесценции вещества, возбуждаемые главным образом ультрафиолетовым излучением или катодными лучами;
  5. рентгеновский, использующий а) рентгеновские спектры атомов, получающиеся при переходах внутренних электронов в атомах, б) дифракцию рентгеновых лучей при прохождении их через исследуемый объект для изучения структуры вещества;
  6. радиоспектроскопический, использующий спектры поглоще­ния молекул в микроволновом участке спектра с длинами волн больше 1 мм.

3.По характеру получаемых результатов:
1) качественный, когда в результате анализа определяется состав без указания на количественное соотношение компонентов или дается оценка - много, мало, очень мало, следы;
2) полуколичественный, или грубоколичественный, или приближенный. В этом случае результат выдается в виде оценки со­ держания компонентов в некоторых более или менее узких интер­валах концентраций в зависимости от применяемого метода при­ближенной количественной оценки. Этот метод благодаря его быстроте нашел широкое применение при решении задач, нетре­бующих точного количественного определения, например при
сортировке металла, при оценке содержания геологических проб при поисках полезных ископаемых;
3) количественный, при котором выдается точное количествен­ное содержание определяемых элементов или соединений в пробе.
Все эти типы анализа, за исключением качественных, используют упрощенные или точные методы фотометрирования спектров.

По способу регистрации спектров различаются следующие ме­тоды:
1. Визуальные при наблюдении спектров в видимой области с помощью простых или специализированных спектроскопов (стилоскоп, стилометр). В ультрафиолетовой области.возможно наблюдение сравнительно ярких спектров с помощью флуоресцирующих экранов, рас­полагаемых вместо фотографической пластинки в кварцевых спектро­графах. Применение электронно-оптических преобразователей позво­ляет визуально наблюдать спектры в ультрафиолетовой и ближней инфракрасной областях (до 12000А).
2. Фотографические, использующие фотографическую пластинку или пленку для регистрации спектров с последующей обработкой.
3. Фотоэлектрические для ультрафиолетовой, видимой и ближней инфракрасной областей, использующие фотоэлементы разных типов»
фотоумножители и фотосопротивления (инфракрасная область). Фотоэлектрические методы иногда называются методами прямого анализа,
т. е. анализа без посредства фотографической пластинки.
4. Термоэлектрические для инфракрасной области, в том числе далекой, с использованием термоэлементов, болометров и других типов термоэлектрических приемников.
Рассмотренные выше типы спектрального анализа имеют ряд общих черт, поскольку все они используют спектры атомов или моле­кул как средство для проведения анализа. Действительно, во всех слу­чаях необходимо в первую очередь получить спектр пробы, затем рас­шифровать этот спектр по таблицам или атласам спектров, т. е. найти в этом спектре линии или полосы, характерные для определяемых атомов, молекул или структурных элементов молекул. Этим ограничи­вается качественный анализ. Для получения количественной величины концентрации надо, кроме того, определить интенсивность этих харак­терных линий или полос (фотометрировать спектр), затем определить величину концентрации, используя зависимость между концентрацией и интенсивностью линий или полос. Зависимость эта "должна быть получена либо на основании теоретических соображений, либо эмпи­рическим путем в виде аналитической кривой, построенной на основе набора проб с заданными концентрациями (эталоны).

1.2.2 ЭЛЕМЕНТНЫЙ И ИЗОТОПНЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ

Элементный и изотопный спектральный анализ предполагает качественное и количественное определения элементного и изотопного состава пробы по спектрам испускания, расположенным в диапазоне от ближней инфра-красной до рентгеновской области. Иногда для этих целей применяются и молекулярные спектры испускания или поглоще­ния. Примером может служить определение водорода, азота и кисло­рода в газовых смесях, которое может проводиться по молекулярным спектрам двухатомных молекул Нг, N2, О2. Точно так же изотопный анализ элементов средней части периодической таблицы выгодно вести по электронно-колебательным молекулярным спектрам, в которых изо­топическое смещение достаточно велико и доступно наблюдению с по­мощью обычных спектральных приборов с большой дисперсией.
Однако при решении поставленной задачи определения концентрации оксида углерода необходимо рассматривать методы молекулярного спектрального анализа.

1.2.3 МОЛЕКУЛЯРНЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ

Молекулярный спектральный анализ предполагает качественное и количественное определение, молекулярного состава пробы по молеку­лярным спектрам поглощения и испускания. Эти методы применяются для промышленного контроля молекулярного состава проб, например при производстве витаминов, красителей, бензинов и т. д.
Молекулярные спектры очень сложны, так как возможны различ­ные электронные переходы в молекулах (электронныеспектры), коле­бательные переходы с изменением колебательных состояний ядер ато­мов, входящих в состав молекулы (колебательный спектр), и измене­ния вращательных состояний молекулы (вращательныйспектр). Эти спектры расположены в различных областях длин волн (частот). Элек­тронные спектры, усложняющиеся колебательной и вращательной структурой, представляют собой систему характерных полос (иногда такой спектр называют линейчато-полосатым), которые располагают­ся от вакуумной ультрафиолетовой (~1000А) до ближней инфракрас­ной области (~ 12000А). Колебательные спектры, сопровождающиеся вращательной структурой, расположены в ближней инфракрасной части спектра от 1,2 до 40 (от 8-103.до 250 см~1). Вращательные спектры расположены в более далекой инфракрасной части спектра и измерение их оптическими (термоэлектрическими) средствами возможно до ~1,5 мм (т. е. от 250 до 6 см~1). Вращательные спектры заходят в микроволновую область, изучаемую средствами радиоспектроскопии.
В соответствии с техническими средствами, используемыми при проведении молекулярного спектрального анализа, различаются сле­дующие типы молекулярного анализа.

Абсорбционный анализ по спектрам поглощения
При проведении такого типа анализа проба берется в газообраз­ном, жидком или твердом состоянии, помещается между источником сплошного спектра (лампа накаливания для видимой области спектра, водородная или криптоновая лампа для ультрафиолетовой области, раскаленный штифт для инфракрасной области) и спектральным при­бором. Спектр поглощения анализируется при помощи спектрометра (спектрографа) или спектрофотометра.
В соответствии со способами регистрации спектра поглощения и используемыми областями спектра различаются следующие методы абсорбционного молекулярного спектрального анализа.
Визуальный , когда наблюдение спектра поглощения при качест­венном анализе производится в видимой области при помощи простей­ших спектроскопов прямого зрения с пробирками или небольшими кюветами для растворов, помещаемых непосредственно перед щелью. В качестве источника света, пропускаемого через исследуемое веще­ство, используется лампа накаливания или дневной солнечный свет. Для количественного анализа проводится точное измерение ослабле­ния световых лучей определенной длимы волны при прохождении их через исследуемое вещество. Эта задача решается визуальным спектрофотометрированием при помощи спектрофотометров с поляризационными или другими типами фотометрических приспособлений. Использование флуоресцирующих экранов, светящихся под действием ультрафиолетовых лучей, прошедших через исследуемое вещество, позволяет производить визуальный анализ и в ультрафиолетовой об­ласти. Для визуального определения интенсивности свечения очень слабых источников, в частности флуоресцирующих экранов, иногда применяется метод порога зрительного ощущения. С помощью пере­мещения нейтрального оптического клина, поставленного перед гла­зом наблюдателя, яркость свечения ослабляется до порога чувстви­тельности глаза, т. е. исчезновения свечения. Фиксируются два поло­жения клина: первое, соответствующее ослаблению до порога яркости флуоресценции экрана при падении на него неослабленного пучка света, второе - при падении на экран того же пучка, но ослабленного при прохождении через исследуемый слой вещества. Разность этих положений клина, помноженная на константу клина, дает значение оптической плотности слоя препарата.
Фотографическая спектрофотометрия применяется сравнительно редко. Спектр поглощения раствора или паров в видимой или ультра­фиолетовой области фотографируется при помощи спектрографа. Для фотометрирования либо получают спектры при помощи специальных приспособлений (раздвоителей пучков света), дающих на пластинке один под другим спектры источника с заданным ослаблением и погло­щением пробы, либо используют технику фотографического фотомет­рирования.
Фотоэлектрическая спектрофотометрия в настоящее время являет­ся основным типом абсорбционного молекулярного анализа, применяе­мым в исследовательских и промышленных лабораториях. В спектраль­ном приборе (монохроматоре) за выходной щелью располагается фотоэлектрический приемник излучения. Перед входной щелью ста­вится кювета с пробой. На приемник последовательно падает свет от источника сплошного спектра без пробы и свет, прошедший пробу. Фототок усиливается, и с измерительного прибора можно снимать значения оптической плотности образца (нерегистрирующие спектро­фотометры) . Регистрирующие спектрофотометры автоматически запи­сывают кривую пропускания или оптической плотности. Надо отметить, что для многих целей технического анализа при массовом контроле однотипных проб возможно применение упрощен­ных спектрофотометров, где выделение спектральной области произ­водится интерференционными светофильтрами или фокальным монохроматором.
Фотоэлектрическая спектрофотометрия позволяет решать задачу непрерывного автоматического контроля производства красителей, ви­таминов и других материалов по ходу технологического процесса. Для этой цели на заранее выбранном этапе технологического процесса производится спектрофотометрирование при помощи фотоэлектриче­ских спектрофотометров, показания которых можно передать на диспет­черский пункт завода для регулировки технологического процесса. Пока­зания спектрофотометра можно связать с системой автоматического управления процессом.
Спектрофотометрия в инфракрасной области спектра (от 1 до 40-50 мкм). Анализ проводится по колебательно-вращательным спект­рам, которые при решении многих задач характернее электронных в видимой и ультрафиолетовой областях, чем определяется широкое рас­пространение этого вида молекулярного спектрального анализа. Техни­ческими средствами являются регистрирующие спектрометры и спектрофотометры. Для проведения анализа необходимо знать спектр определяемого соединения; в этом, однако, заключается специфи­ческая трудность анализа в инфракрасной области, так как для моле­кулярных соединений, число которых необозримо, составление исчер­пывающих спектральных таблиц практически неосуществимо. В целях развития молекулярного спектрального анализа в настоящее время ведется регулярная работа по накоплению и систематизации данных по инфракрасным спектрам поглощения для различных химических соединений.
Эмиссионный молекулярный спектральный анализ
Широко используются два типа анализа: комбинационный и люминесцентный.
Анализ по спектрам комбинационного рассеяния (комбинацион­ный). Исследуемое вещество в жидком виде или в виде раствора поме­щается в специальной стеклянной кювете и освещается светом силь­ных ртутных ламп. Возникающее в веществе комбинационное свечение анализируется при помощи светосильного спектрального прибора.
Спектр комбинационного рассеяния обычно наблюдается от голу­бой (4358А), иногда зеленой (5461 А) и редко от желтых линий (5770/5790 А) ртутного спектра. Зеленая и желтая линии используются главным образом для анализа проб, которые сильно рассеивают свет (мутные жидкости, твердые порошки).
Положение комбинационных линий относительно возбуждающей ртутной линии, их интенсивности, полуширины и степень поляризации характеризуют спектр комбинационного рассеяния данной молекулы. По таким спектрам можно проводить качественный и количественный анализы молекулярных соединений, если из ранее проведенных опытов их комбинационные спектры известны. Вследствие многочисленности химических соединений таблицы их спектров не могут быть исчерпы­вающими и должны непрерывно пополняться.
В связи с малой интенсивностью линий комбинационного рассея­ния для их получения используются светосильные спектрографы. Однако и в этом случае для получения достаточно четких спектров необходимы длительные экспозиции. В последнее время стала разви­ваться фотоэлектрическая методика регистрации спектров ком­бинационного рассеяния. В этом случае излучение принимается свето­сильным монохроматором, за выходной щелью которого расположен фотоумножитель; фототок после усиления регистрируется самописцем. При записи спектр перемещается по выходной щели монохроматора при помощи вращения диспергирующей системы (принцип сканирова­ния спектра). Сочетание светосильных монохроматоров с ФЭУ, обла­дающими большой чувствительностью, позволяет быстро записывать слабые спектры комбинационного рассеяния вместо нескольких часов экспозиции при фотографировании.
Люминесцентный анализ основан на исследовании излучения флуоресценции и фосфоресценции главным образом твердых и жидких проб при воздействии на них ультрафиолетового или корпускулярного излучения. Особенно широкое распространение получил анализ на основе наблюдения фотофлуоресценции. В этом случае проба осве­щается ультрафиолетовым излучением ртутной лампы через черное увиолевое стекло; этот фильтр пропускает невидимое излучение яркой ртутной линии 3650А и других близлежащих линий и устраняет види­мый свет лампы. Под действием ультрафиолетовых лучей проба или ее отдельные части (в случае неоднородных проб, например, минера-1 лов, порошков) начинают светиться характерным светом. Цвет этого свечения и его интенсивность являются аналитическими признаками, позволяющими производить качественный и количественный анализы. В ряде случаев применяется спектральное разложение свечения флуоресценции; суждение о составе и концентрации делается на основе изучения спектрального состава излучения.
Явление флуоресценции характеризуется следующими свойствами, определяющими его аналитические возможности. Под действием коротковолнового излучения возбуждаются электронные оболочки люминесцентных молекул, присутствующих в веществе пробы; необ­ходимо поэтому, чтобы возбуждающее излучение находилось внутри полосы поглощения исследуемых молекул. Возбужденные молекулы начинают излучать свет, максимум спектра которого сдвинут в сторо­ну длинных волн по отношению к максимуму спектра поглощения; вследствие этого обычно длины волн спектра люминесценции больше, чем длина волны возбуждающего света.Однако часть энергии, поглощенной молекулами вещества, при некоторых условиях может до излучения распределиться по другим степеням свободы молекул, при этом происходит тушение флуоресцен­ции. Оно связано как со свойствами самого люминесцентного веще­ства, так и со свойствами растворителя и особенно сильно развивается при больших концентрациях люминесцентного вещества в растворе (концентрационноетушение).
Люминесцентный анализ по спектрам флуоресценции обладает исключительно высокой чувствительностью: например, атомы урана обнаруживаются в ничтожных концентрациях до 10-8- 10-6 %, в то время как эмиссионный элементный анализ обнаруживает только 10-4 -10-3 %. Однако столь высокая чувствительность люминесцент­ного анализа приводит к серьезным трудностям: достаточно незначи­тельной примеси постороннего вещества, также способного люминесцировать, чтобы его свечение обнаруживалось в наблюдаемом спектре и искажало результаты визуального определения, когда анализ прово­дится без спектрального разложения.
Люминесцентный анализ находит широкое применение в пищевой промышленности (контроль свежести продуктов), в сельском хозяй­стве (контроль всхожести семян), в биологии и медицине (различение здоровых тканей от больных, обнаружение бактерий), в заводских лабораториях (для обнаружения пороков и трещин в металлических деталях) и т. п. Большое преимущество такого метода анализа в его простоте, быстроте и несложности применяемой аппаратуры, особенно для случая качественного анализа.
Необходимо отметить, что эмиссионные молекулярные спектры успешно применяются для обнаружения промежуточных сое­динений (радикалов) в пламенах, газоразрядной плазме и газах, нагре­тых до высоких температур. Такие двухатомные молекулы, как ОН, CN, СН, N0, С2 и др., излучают в видимой и ультрафиолетовой обла­стях весьма характерные электронно-колебательные спектры, которые чрезвычайно легко поддаются интерпретации и количественному изме­рению. Спектрами излучения радикалов пользуются для качественного их обнаружения и примерной количественной оценки. Вполне возмож­но использование для этой цели также и спектров поглощения радика­лов в ультрафиолетовой и видимой областях спектра, а также инфра­красных спектров поглощения (колебательные спектры) и вращатель­ных спектров поглощения в микроволновой области спектра.

Просмотров