Formula generală pentru ecuațiile trigonometrice. Metode de bază pentru rezolvarea ecuațiilor trigonometrice

Rezolvarea ecuațiilor trigonometrice simple.

Rezolvarea ecuațiilor trigonometrice de orice nivel de complexitate se reduce în cele din urmă la rezolvarea celor mai simple ecuații trigonometrice. Și în acest sens, cercul trigonometric se dovedește din nou a fi cel mai bun asistent.

Să ne amintim definițiile cosinusului și sinusului.

Cosinusul unui unghi este abscisa (adică coordonata de-a lungul axei) a unui punct de pe cercul unitar corespunzător unei rotații printr-un unghi dat.

Sinusul unui unghi este ordonata (adică coordonata de-a lungul axei) a unui punct de pe cercul unitar corespunzător unei rotații printr-un unghi dat.

Direcția pozitivă a mișcării pe cercul trigonometric este în sens invers acelor de ceasornic. O rotație de 0 grade (sau 0 radiani) corespunde unui punct cu coordonate (1;0)

Folosim aceste definiții pentru a rezolva ecuații trigonometrice simple.

1. Rezolvați ecuația

Această ecuație este satisfăcută de toate valorile unghiului de rotație care corespund punctelor din cerc a căror ordonată este egală cu .

Să marchem un punct cu ordonată pe axa ordonatelor:


Desenați o linie orizontală paralelă cu axa x până când se intersectează cu cercul. Obținem două puncte situate pe cerc și având o ordonată. Aceste puncte corespund unghiurilor de rotație în și radiani:


Dacă, lăsând punctul corespunzător unghiului de rotație pe radian, ocolim un cerc complet, atunci vom ajunge la un punct corespunzător unghiului de rotație pe radian și având aceeași ordonată. Adică, acest unghi de rotație satisface și ecuația noastră. Putem face câte revoluții „în gol” ne dorim, revenind la același punct, iar toate aceste valori ale unghiului ne vor satisface ecuația. Numărul de rotații „în gol” va fi notat cu litera (sau). Deoarece putem face aceste revoluții atât în ​​direcții pozitive, cât și în direcții negative, (sau) poate lua orice valoare întreagă.

Adică, prima serie de soluții la ecuația originală are forma:

, , - set de numere întregi (1)

În mod similar, a doua serie de soluții are forma:

, Unde , . (2)

După cum probabil ați ghicit, această serie de soluții se bazează pe punctul de pe cerc corespunzător unghiului de rotație cu .

Aceste două serii de soluții pot fi combinate într-o singură intrare:

Dacă luăm (adică chiar) în această intrare, atunci vom obține prima serie de soluții.

Dacă luăm (adică impar) în această intrare, atunci obținem a doua serie de soluții.

2. Acum să rezolvăm ecuația

Deoarece aceasta este abscisa unui punct de pe cercul unitar obtinut prin rotirea printr-un unghi, marcam punctul cu abscisa pe axa:


Desenați o linie verticală paralelă cu axa până când se intersectează cu cercul. Vom obține două puncte situate pe cerc și având o abscisă. Aceste puncte corespund unghiurilor de rotație în și radiani. Amintiți-vă că atunci când ne mișcăm în sensul acelor de ceasornic obținem un unghi de rotație negativ:


Să notăm două serii de soluții:

,

,

(Ajungem la punctul dorit mergând de la cercul complet principal, adică.

Să combinăm aceste două serii într-o singură intrare:

3. Rezolvați ecuația

Linia tangentă trece prin punctul cu coordonatele (1,0) ale cercului unitar paralel cu axa OY

Să marchem un punct pe el cu o ordonată egală cu 1 (căutăm tangenta a cărei unghiuri este egală cu 1):


Să conectăm acest punct la originea coordonatelor cu o linie dreaptă și să marchem punctele de intersecție ale dreptei cu cercul unitar. Punctele de intersecție ale dreptei și ale cercului corespund unghiurilor de rotație pe și:


Deoarece punctele corespunzătoare unghiurilor de rotație care satisfac ecuația noastră se află la o distanță de radiani unul de celălalt, putem scrie soluția astfel:

4. Rezolvați ecuația

Linia cotangentelor trece prin punctul cu coordonatele cercului unitar paralel cu axa.

Să marchem un punct cu abscisă -1 pe linia cotangenților:


Să conectăm acest punct la originea dreptei și să o continuăm până când se intersectează cu cercul. Această linie dreaptă va intersecta cercul în puncte corespunzătoare unghiurilor de rotație în și radiani:


Deoarece aceste puncte sunt separate unul de celălalt printr-o distanță egală cu , atunci solutie generala Putem scrie această ecuație astfel:

În exemplele date care ilustrează soluția celor mai simple ecuații trigonometrice, s-au folosit valori tabelare ale funcțiilor trigonometrice.

Totuși, dacă partea dreaptă a ecuației conține o valoare netabelară, atunci înlocuim valoarea în soluția generală a ecuației:





SOLUȚII SPECIALE:

Să marchem punctele de pe cerc a cărui ordonată este 0:


Să marchem un singur punct pe cerc a cărui ordonată este 1:


Să marchem un singur punct pe cerc a cărui ordonată este egală cu -1:


Deoarece se obișnuiește să se indice valorile cele mai apropiate de zero, scriem soluția după cum urmează:

Să marchem punctele cercului a cărui abscisă este egală cu 0:


5.
Să marchem un singur punct pe cerc a cărui abscisă este egală cu 1:


Să marchem un singur punct pe cerc a cărui abscisă este egală cu -1:


Și exemple puțin mai complexe:

1.

Sinusul este egal cu unu dacă argumentul este egal cu

Argumentul sinusului nostru este egal, deci obținem:

Împărțiți ambele părți ale egalității la 3:

Răspuns:

2.

Cosinusul este zero dacă argumentul cosinusului este

Argumentul cosinusului nostru este egal cu , deci obținem:

Să exprimăm , pentru a face acest lucru ne deplasăm mai întâi la dreapta cu semnul opus:

Să simplificăm partea dreaptă:

Împărțiți ambele părți la -2:

Rețineți că semnul din fața termenului nu se schimbă, deoarece k poate lua orice valoare întreagă.

Răspuns:

Și, în sfârșit, urmăriți lecția video „Selectarea rădăcinilor într-o ecuație trigonometrică folosind un cerc trigonometric”

Aceasta încheie conversația noastră despre rezolvarea ecuațiilor trigonometrice simple. Data viitoare vom vorbi despre cum să decidem.

Cele mai simple ecuații trigonometrice se rezolvă, de regulă, folosind formule. Permiteți-mi să vă reamintesc că cele mai simple ecuații trigonometrice sunt:

sinx = a

cosx = a

tgx = a

ctgx = a

x este unghiul care trebuie găsit,
a este orice număr.

Și iată formulele cu care puteți nota imediat soluțiile acestor ecuații simple.

Pentru sinus:


Pentru cosinus:

x = ± arccos a + 2π n, n ∈ Z


Pentru tangentă:

x = arctan a + π n, n ∈ Z


Pentru cotangentă:

x = arcctg a + π n, n ∈ Z

De fapt, aceasta este partea teoretică a rezolvării celor mai simple ecuații trigonometrice. Mai mult, totul!) Nimic. Cu toate acestea, numărul de erori pe acest subiect este pur și simplu în afara graficelor. Mai ales dacă exemplul se abate ușor de la șablon. De ce?

Da, pentru că mulți oameni notează aceste scrisori, fără să le înțelegem deloc sensul! El scrie cu prudență, ca să nu se întâmple ceva...) Acest lucru trebuie rezolvat. Trigonometrie pentru oameni sau oameni pentru trigonometrie, până la urmă!?)

Să ne dăm seama?

Un unghi va fi egal cu arccos a, doilea: -arccos a.

Și întotdeauna va funcționa așa. Pentru orice O.

Dacă nu mă credeți, treceți mouse-ul peste imagine sau atingeți fotografia de pe tabletă.) Am schimbat numărul O la ceva negativ. Oricum, avem un colț arccos a, doilea: -arccos a.

Prin urmare, răspunsul poate fi întotdeauna scris ca două serii de rădăcini:

x 1 = arccos a + 2π n, n ∈ Z

x 2 = - arccos a + 2π n, n ∈ Z

Să combinăm aceste două serii într-una singură:

x= ± arccos a + 2π n, n ∈ Z

Și asta-i tot. Am obținut o formulă generală pentru rezolvarea celei mai simple ecuații trigonometrice cu cosinus.

Dacă înțelegi că acesta nu este un fel de înțelepciune supraștiințifică, dar doar o versiune scurtă a două serii de răspunsuri, De asemenea, veți putea face față sarcinilor „C”. Cu inegalități, cu selectarea rădăcinilor dintr-un interval dat... Acolo răspunsul cu plus/minus nu merge. Dar dacă tratați răspunsul într-o manieră de afaceri și îl descompuneți în două răspunsuri separate, totul va fi rezolvat.) De fapt, de aceea îl analizăm. Ce, cum și unde.

În cea mai simplă ecuație trigonometrică

sinx = a

obținem și două serii de rădăcini. Întotdeauna. Și aceste două serii pot fi și înregistrate într-o singură linie. Doar această linie va fi mai complicată:

x = (-1) n arcsin a + π n, n ∈ Z

Dar esența rămâne aceeași. Matematicienii au conceput pur și simplu o formulă pentru a face una în loc de două intrări pentru serii de rădăcini. Asta e tot!

Să verificăm matematicienii? Și nu se știe niciodată...)

În lecția anterioară, soluția (fără formule) a unei ecuații trigonometrice cu sinus a fost discutată în detaliu:

Răspunsul a rezultat în două serii de rădăcini:

x 1 = π /6 + 2π n, n ∈ Z

x 2 = 5π /6 + 2π n, n ∈ Z

Dacă rezolvăm aceeași ecuație folosind formula, obținem răspunsul:

x = (-1) n arcsin 0,5 + π n, n ∈ Z

De fapt, acesta este un răspuns neterminat.) Studentul trebuie să știe asta arcsin 0,5 = π /6. Răspunsul complet ar fi:

x = (-1)n π /6+ π n, n ∈ Z

Aici apare intrebare interesanta. Răspunde prin x 1; x 2 (acesta este răspunsul corect!) și prin singuratic X (și acesta este răspunsul corect!) - sunt sau nu același lucru? Vom afla acum.)

Inlocuim in raspuns cu x 1 valorile n =0; 1; 2; etc., numărăm, obținem o serie de rădăcini:

x 1 = π/6; 13π/6; 25π/6 și așa mai departe.

Cu aceeași înlocuire ca răspuns cu x 2 , obținem:

x 2 = 5π/6; 17π/6; 29π/6 și așa mai departe.

Acum să înlocuim valorile n (0; 1; 2; 3; 4...) în formula generală pentru single X . Adică ridicăm minus unu la puterea zero, apoi la prima, a doua etc. Ei bine, desigur, substituim 0 în al doilea termen; 1; 2 3; 4, etc. Și numărăm. Primim seria:

x = π/6; 5π/6; 13π/6; 17π/6; 25π/6 și așa mai departe.

Asta este tot ce poți vedea.) Formula generala ne oferă exact aceleasi rezultate precum cele două răspunsuri separat. Doar totul deodată, în ordine. Matematicienii nu au fost păcăliți.)

Pot fi verificate și formule pentru rezolvarea ecuațiilor trigonometrice cu tangentă și cotangentă. Dar nu vom face.) Ele sunt deja simple.

Am scris în mod special toate aceste înlocuiri și verificări. Aici este important să înțelegeți un lucru simplu: există formule pentru rezolvarea ecuațiilor trigonometrice elementare, doar un scurt rezumat al răspunsurilor. Pentru această concizie, a trebuit să introducem plus/minus în soluția de cosinus și (-1) n în soluția de sinus.

Aceste inserții nu interferează în niciun fel în sarcinile în care trebuie doar să scrieți răspunsul la o ecuație elementară. Dar dacă trebuie să rezolvați o inegalitate sau atunci trebuie să faceți ceva cu răspunsul: selectați rădăcini pe un interval, verificați ODZ etc., aceste inserții pot deranja cu ușurință o persoană.

Deci ce ar trebui să fac? Da, fie scrieți răspunsul în două serii, fie rezolvați ecuația/inegalitatea folosind cercul trigonometric. Apoi aceste inserții dispar și viața devine mai ușoară.)

Putem rezuma.

Pentru a rezolva cele mai simple ecuații trigonometrice, există formule de răspuns gata făcute. Patru piese. Sunt bune pentru a scrie instantaneu soluția unei ecuații. De exemplu, trebuie să rezolvați ecuațiile:


sinx = 0,3

Uşor: x = (-1) n arcsin 0,3 + π n, n ∈ Z


cosx = 0,2

Nici o problemă: x = ± arccos 0,2 + 2π n, n ∈ Z


tgx = 1,2

Uşor: x = arctan 1,2 + π n, n ∈ Z


ctgx = 3,7

Unul a ramas: x= arcctg3,7 + π n, n ∈ Z

cos x = 1,8

Dacă tu, strălucind de cunoștințe, scrii instantaneu răspunsul:

x= ± arccos 1,8 + 2π n, n ∈ Z

atunci deja stralucesti, asta... aia... dintr-o balta.) Raspuns corect: nu exista solutii. Nu inteleg de ce? Citiți ce este arccosinusul. În plus, dacă în partea dreaptă a ecuației inițiale există valori tabelare de sinus, cosinus, tangentă, cotangentă, - 1; 0; √3; 1/2; √3/2 etc. - răspunsul prin arcade va fi neterminat. Arcurile trebuie convertite în radiani.

Și dacă întâlnești inegalitate, cum ar fi

atunci raspunsul este:

x πn, n ∈ Z

există prostii rare, da...) Aici trebuie să rezolvi folosind cercul trigonometric. Ce vom face în subiectul corespunzător.

Pentru cei care citesc eroic aceste rânduri. Pur și simplu nu pot să nu apreciez eforturile tale titane. Bonus pentru tine.)

Bonus:

Când notează formule într-o situație alarmantă de luptă, chiar și tocilarii experimentați devin adesea confuzi cu privire la unde πn, si unde 2π n. Iată un truc simplu pentru tine. În toată lumea formule de valoare πn. Cu excepția singurei formule cu arc cosinus. Stă acolo 2πn. Două ciocăni. Cuvânt cheie - două.În aceeași formulă există două semnează la început. Plus și minus. Și acolo, și acolo - două.

Deci daca ai scris două semn înaintea arcului cosinus, este mai ușor să ne amintim ce se va întâmpla la sfârșit două ciocăni. Și se întâmplă și invers. Persoana va rata semnul ± , ajunge până la capăt, scrie corect două Pien și își va veni în fire. Mai e ceva înainte două semn! Persoana se va întoarce la început și va corecta greșeala! Ca aceasta.)

Daca va place acest site...

Apropo, mai am câteva site-uri interesante pentru tine.)

Puteți exersa rezolvarea exemplelor și puteți afla nivelul dvs. Testare cu verificare instantanee. Să învățăm - cu interes!)

Vă puteți familiariza cu funcțiile și derivatele.

O lecție de aplicare integrată a cunoștințelor.

Obiectivele lecției.

  1. Luați în considerare diferite metode de rezolvare a ecuațiilor trigonometrice.
  2. Dezvoltare creativitatea elevilor prin rezolvarea de ecuații.
  3. Încurajarea elevilor la autocontrol, control reciproc și autoanaliză a activităților lor de învățare.

Echipament: ecran, proiector, material de referință.

Progresul lecției

Conversație introductivă.

Principala metodă de rezolvare a ecuațiilor trigonometrice este reducerea acestora la forma lor cea mai simplă. În acest caz, se folosesc metodele obișnuite, de exemplu, factorizarea, precum și tehnicile folosite doar pentru rezolvarea ecuațiilor trigonometrice. Există destul de multe dintre aceste tehnici, de exemplu, diferite substituții trigonometrice, transformări de unghi, transformări ale funcțiilor trigonometrice. Aplicarea fără discernământ a oricăror transformări trigonometrice de obicei nu simplifică ecuația, dar o complică catastrofal. Să te antrenezi în schiță generală plan pentru rezolvarea ecuației, schițați o modalitate de a reduce ecuația la cel mai simplu, trebuie mai întâi să analizați unghiurile - argumentele funcțiilor trigonometrice incluse în ecuație.

Astăzi vom vorbi despre metode de rezolvare a ecuațiilor trigonometrice. Metoda aleasă corect poate de multe ori simplifica semnificativ soluția, așa că toate metodele pe care le-am studiat ar trebui să fie întotdeauna reținute pentru a rezolva ecuațiile trigonometrice folosind metoda cea mai potrivită.

II. (Folosind un proiector, repetăm ​​metodele de rezolvare a ecuațiilor.)

1. Metoda de reducere a unei ecuații trigonometrice la una algebrică.

Este necesar să exprimați toate funcțiile trigonometrice printr-o singură, cu același argument. Acest lucru se poate face folosind identitatea trigonometrică de bază și consecințele acesteia. Obținem o ecuație cu o funcție trigonometrică. Luând-o ca pe o nouă necunoscută, obținem o ecuație algebrică. Îi găsim rădăcinile și ne întoarcem la vechea necunoscută, rezolvând cele mai simple ecuații trigonometrice.

2. Metoda factorizării.

Pentru a schimba unghiurile, sunt adesea utile formulele de reducere, suma și diferența de argumente, precum și formulele de conversie a sumei (diferenței) funcțiilor trigonometrice într-un produs și invers.

sin x + sin 3x = sin 2x + sin4x

3. Metoda introducerii unui unghi suplimentar.

4. Metoda de utilizare a substituției universale.

Ecuațiile de forma F(sinx, cosx, tanx) = 0 sunt reduse la algebrice folosind o substituție trigonometrică universală

Exprimarea sinusului, cosinusului și tangentei în termeni de tangente a unui semiunghi. Această tehnică poate duce la o ecuație de ordin superior. Soluția la care este dificilă.

Când rezolvi multe probleme matematice, în special cele care apar înainte de clasa a 10-a, este clar definită ordinea acțiunilor efectuate care vor duce la obiectiv. Astfel de probleme includ, de exemplu, ecuații liniare și pătratice, liniare și inegalități pătratice, ecuații fracționaleşi ecuaţii care se reduc la cele pătratice. Principiul rezolvării cu succes a fiecăreia dintre problemele menționate este următorul: este necesar să se stabilească ce tip de problemă este rezolvată, să se rețină succesiunea necesară de acțiuni care vor duce la rezultatul dorit, adică răspundeți și urmați acești pași.

Este evident că succesul sau eșecul în rezolvarea unei anumite probleme depinde în principal de cât de corect este determinat tipul de ecuație care se rezolvă, cât de corect este reprodusă succesiunea tuturor etapelor rezolvării acesteia. Desigur, este necesar să aveți abilități pentru a performa transformări identitareși de calcul.

Situația este diferită cu ecuații trigonometrice. Nu este deloc greu de stabilit faptul că ecuația este trigonometrică. Apar dificultăți la determinarea succesiunii de acțiuni care ar duce la răspunsul corect.

De aspect ecuație, uneori este dificil să-i determine tipul. Și fără a cunoaște tipul de ecuație, este aproape imposibil să o alegeți pe cea potrivită dintre câteva zeci de formule trigonometrice.

Pentru a rezolva o ecuație trigonometrică, trebuie să încercați:

1. aduceți toate funcțiile incluse în ecuație la „aceleași unghiuri”;
2. aduceți ecuația la „funcții identice”;
3. factorizează partea stângă a ecuației etc.

Să luăm în considerare metode de bază pentru rezolvarea ecuațiilor trigonometrice.

I. Reducerea la cele mai simple ecuaţii trigonometrice

Diagrama soluției

Pasul 1. Expres functie trigonometrica prin componente cunoscute.

Pasul 2. Găsiți argumentul funcției folosind formulele:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = arctan a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Pasul 3. Găsiți variabila necunoscută.

Exemplu.

2 cos(3x – π/4) = -√2.

Soluţie.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Răspuns: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Înlocuire variabilă

Diagrama soluției

Pasul 1. Reduceți ecuația la formă algebrică în raport cu una dintre funcțiile trigonometrice.

Pasul 2. Notați funcția rezultată prin variabila t (dacă este necesar, introduceți restricții asupra t).

Pasul 3. Scrieți și rezolvați ecuația algebrică rezultată.

Pasul 4. Faceți o înlocuire inversă.

Pasul 5. Rezolvați cea mai simplă ecuație trigonometrică.

Exemplu.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Soluţie.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Fie sin (x/2) = t, unde |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 sau e = -3/2, nu satisface condiția |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Răspuns: x = π + 4πn, n Є Z.

III. Metoda de reducere a ordinii ecuațiilor

Diagrama soluției

Pasul 1.Înlocuiți această ecuație cu una liniară, folosind formula de reducere a gradului:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Pasul 2. Rezolvați ecuația rezultată folosind metodele I și II.

Exemplu.

cos 2x + cos 2 x = 5/4.

Soluţie.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Răspuns: x = ±π/6 + πn, n Є Z.

IV. Ecuații omogene

Diagrama soluției

Pasul 1. Reduceți această ecuație la forma

a) a sin x + b cos x = 0 ( ecuație omogenă gradul I)

sau la vedere

b) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (ecuația omogenă de gradul doi).

Pasul 2.Împărțiți ambele părți ale ecuației la

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

și obțineți ecuația pentru tan x:

a) a tan x + b = 0;

b) a tan 2 x + b arctan x + c = 0.

Pasul 3. Rezolvați ecuația folosind metode cunoscute.

Exemplu.

5sin 2 x + 3sin x cos x – 4 = 0.

Soluţie.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Fie tg x = t, atunci

t 2 + 3t – 4 = 0;

t = 1 sau t = -4, ceea ce înseamnă

tg x = 1 sau tg x = -4.

Din prima ecuație x = π/4 + πn, n Є Z; din a doua ecuaţie x = -arctg 4 + πk, k Є Z.

Răspuns: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Metoda de transformare a unei ecuații folosind formule trigonometrice

Diagrama soluției

Pasul 1. Folosind tot felul de formule trigonometrice, reduceți această ecuație la o ecuație rezolvată prin metodele I, II, III, IV.

Pasul 2. Rezolvați ecuația rezultată folosind metode cunoscute.

Exemplu.

sin x + sin 2x + sin 3x = 0.

Soluţie.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 sau 2cos x + 1 = 0;

Din prima ecuație 2x = π/2 + πn, n Є Z; din a doua ecuație cos x = -1/2.

Avem x = π/4 + πn/2, n Є Z; din a doua ecuație x = ±(π – π/3) + 2πk, k Є Z.

Ca rezultat, x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Răspuns: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Abilitatea și deprinderea de a rezolva ecuații trigonometrice este foarte important, dezvoltarea lor necesită un efort semnificativ, atât din partea elevului, cât și din partea profesorului.

Multe probleme de stereometrie, fizică etc. sunt asociate cu rezolvarea ecuațiilor trigonometrice Procesul de rezolvare a unor astfel de probleme întruchipează multe dintre cunoștințele și abilitățile care sunt dobândite prin studierea elementelor de trigonometrie.

Ecuații trigonometrice ocupă un loc important în procesul de învăţare a matematicii şi de dezvoltare personală în general.

Mai ai întrebări? Nu știi cum să rezolvi ecuații trigonometrice?
Pentru a obține ajutor de la un tutor, înregistrați-vă.
Prima lecție este gratuită!

site-ul web, atunci când copiați materialul integral sau parțial, este necesar un link către sursă.

Conceptul de rezolvare a ecuațiilor trigonometrice.

  • Pentru a rezolva o ecuație trigonometrică, convertiți-o într-una sau mai multe ecuații trigonometrice de bază. Rezolvarea unei ecuații trigonometrice se reduce în cele din urmă la rezolvarea celor patru ecuații trigonometrice de bază.
  • Rezolvarea ecuațiilor trigonometrice de bază.

    • Există 4 tipuri de ecuații trigonometrice de bază:
    • sin x = a; cos x = a
    • tan x = a; ctg x = a
    • Rezolvarea ecuațiilor trigonometrice de bază implică examinarea diferitelor poziții x pe cercul unității, precum și utilizarea unui tabel de conversie (sau calculator).
    • Exemplul 1. sin x = 0,866. Folosind un tabel de conversie (sau un calculator) veți obține răspunsul: x = π/3. Cercul unitar dă un alt răspuns: 2π/3. Rețineți: toate funcțiile trigonometrice sunt periodice, adică valorile lor se repetă. De exemplu, periodicitatea lui sin x și cos x este 2πn, iar periodicitatea lui tg x și ctg x este πn. Prin urmare, răspunsul este scris după cum urmează:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Exemplul 2. cos x = -1/2. Folosind un tabel de conversie (sau un calculator) veți obține răspunsul: x = 2π/3. Cercul unitar dă un alt răspuns: -2π/3.
    • x1 = 2π/3 + 2π; x2 = -2π/3 + 2π.
    • Exemplul 3. tg (x - π/4) = 0.
    • Răspuns: x = π/4 + πn.
    • Exemplul 4. ctg 2x = 1.732.
    • Răspuns: x = π/12 + πn.
  • Transformări utilizate în rezolvarea ecuațiilor trigonometrice.

    • Pentru transformarea ecuațiilor trigonometrice se folosesc transformări algebrice (factorizarea, reducerea termenilor omogene etc.) și identități trigonometrice.
    • Exemplul 5: Folosind identități trigonometrice, ecuația sin x + sin 2x + sin 3x = 0 este convertită în ecuația 4cos x*sin (3x/2)*cos (x/2) = 0. Astfel, următoarele ecuații trigonometrice de bază trebuie rezolvate: cos x = 0; sin(3x/2) = 0; cos(x/2) = 0.
    • Găsirea unghiurilor prin valori cunoscute funcții.

      • Înainte de a învăța cum să rezolvi ecuațiile trigonometrice, trebuie să înveți cum să găsești unghiuri folosind valorile funcțiilor cunoscute. Acest lucru se poate face folosind un tabel de conversie sau un calculator.
      • Exemplu: cos x = 0,732. Calculatorul va da răspunsul x = 42,95 grade. Cercul unitar va da unghiuri suplimentare, al căror cosinus este, de asemenea, 0,732.
    • Pune deoparte soluția pe cercul unității.

      • Puteți reprezenta soluțiile unei ecuații trigonometrice pe cercul unității. Soluțiile unei ecuații trigonometrice pe cercul unitar sunt vârfurile unui poligon regulat.
      • Exemplu: Soluțiile x = π/3 + πn/2 pe cercul unitar reprezintă vârfurile pătratului.
      • Exemplu: Soluțiile x = π/4 + πn/3 pe cercul unitar reprezintă vârfurile unui hexagon regulat.
    • Metode de rezolvare a ecuațiilor trigonometrice.

      • Dacă o ecuație trigonometrică dată conține o singură funcție trigonometrică, rezolvați acea ecuație ca o ecuație trigonometrică de bază. Dacă o anumită ecuație include două sau mai multe funcții trigonometrice, atunci există 2 metode de rezolvare a unei astfel de ecuații (în funcție de posibilitatea transformării acesteia).
        • Metoda 1.
      • Transformați această ecuație într-o ecuație de forma: f(x)*g(x)*h(x) = 0, unde f(x), g(x), h(x) sunt ecuațiile trigonometrice de bază.
      • Exemplul 6. 2cos x + sin 2x = 0. (0< x < 2π)
      • Soluţie. Folosind formula unghiului dublu sin 2x = 2*sin x*cos x, înlocuiți sin 2x.
      • 2cos x + 2*sin x*cos x = 2cos x*(sin x + 1) = 0. Rezolvați acum cele două ecuații trigonometrice de bază: cos x = 0 și (sin x + 1) = 0.
      • Exemplul 7. cos x + cos 2x + cos 3x = 0. (0< x < 2π)
      • Rezolvare: Folosind identități trigonometrice, transformați această ecuație într-o ecuație de forma: cos 2x(2cos x + 1) = 0. Acum rezolvați cele două ecuații trigonometrice de bază: cos 2x = 0 și (2cos x + 1) = 0.
      • Exemplul 8. sin x - sin 3x = cos 2x. (0< x < 2π)
      • Rezolvare: Folosind identități trigonometrice, transformați această ecuație într-o ecuație de forma: -cos 2x*(2sin x + 1) = 0. Rezolvați acum cele două ecuații trigonometrice de bază: cos 2x = 0 și (2sin x + 1) = 0 .
        • Metoda 2.
      • Convertiți ecuația trigonometrică dată într-o ecuație care conține o singură funcție trigonometrică. Apoi înlocuiți această funcție trigonometrică cu una necunoscută, de exemplu, t (sin x = t; cos x = t; cos 2x = t, tan x = t; tg (x/2) = t etc.).
      • Exemplul 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0< x < 2π).
      • Soluţie. ÎN ecuația datăînlocuiți (cos^2 x) cu (1 - sin^2 x) (după identitate). Ecuația transformată este:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Înlocuiți sin x cu t. Acum ecuația este: 5t^2 - 4t - 9 = 0. Aceasta este ecuație pătratică, având două rădăcini: t1 = -1 și t2 = 9/5. A doua rădăcină t2 nu satisface domeniul de funcții (-1< sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Exemplul 10. tg x + 2 tg^2 x = ctg x + 2
      • Soluţie. Înlocuiți tg x cu t. Rescrieți ecuația inițială după cum urmează: (2t + 1)(t^2 - 1) = 0. Acum găsiți t și apoi găsiți x pentru t = tan x.
  • Vizualizări