Как решить уравнение с иксом в квадрате. Квадратный корень: формулы вычисления

Я им такую классную теорему придумал,
а они решают через дискриминант:-(((
(с) Франсуа Виет
“Несуществующие высказывания”

Формула корней, или длинный способ

Всем, кто хотя бы мало-мальски присутствовал на уроках математики в 8 классе, известна формула корней квадратного уравнения. Решение по формуле корней часто называют в простонародье “решением через дискриминант”. Напомним вкратце формулу корней.

[Вы можете также просмотреть содержание этой статьи в видеоформате ]

Квадратное уравнение имеет вид ax 2 +bx +c = 0, где a , b , c – некоторые числа. Например, в уравнении 2x 2 + 3x – 5 = 0 эти числа равны: a = 2, b = 3. c = -5. Прежде, чем решать любое квадратное уравнение, нужно “увидеть” эти числа и понять, чему они равны.

Далее считают так называемый дискриминант по формуле D=b^2-4ac . В нашем случае D = 3^2 – 4 \cdot 2 \cdot (-5) = 9 + 40 = 49. Затем из дискриминанта извлекают корень: \sqrt{D} = \sqrt{49} = 7 .

После того, как вычислили дискриминант, применяют формулу корней: x_1=\frac{-b-\sqrt{D}}{2a}; x_2=\frac{-b+\sqrt{D}}{2a} :

x_1=\frac{-3-7}{2 \cdot 2}=\frac{-10}{4}=-2,5
x_2= \frac{-3+7}{2 \cdot 2}=\frac{4}{4}=1

И таким образом, уравнение решено. Оно имеет два корня: 1 и -2,5.

Но это уравнение, как и множество других предлагаемых в школьных учебниках/задачниках, можно было решить гораздо более быстрым способом, если знать пару-тройку лайфхаков. И речь не только о теореме Виета, хотя и она является полезным инструментом.

Лайфхак первый . Если a + b + c = 0, то x_1=1, x_2=\frac{c}{a} .

Он применяется только в том случае, если в квадратном уравнении все три коэффициента a , b , c при сложении дают 0. Например, у нас было уравнение 2x 2 + 3x – 5 = 0 . Сложив все три коэффициента, получим 2 + 3 – 5, что равно 0. В этом случае можно не считать дискриминант и не применять формулу корней. Вместо этого можно сразу написать, что

x_1=1,
x_2=\frac{c}{a}=\frac{-5}{2}=-2,5

(заметьте, что тот же результат мы получили в формуле корней).

Часто спрашивают, всегда ли будет получаться x_1=1 ? Да, всегда, когда a + b + c = 0.

Лайфхак второй . Если a + c = b , то x_1=-1, x_2=-\frac{c}{a} .

Пусть дано уравнение 5x 2 + 6x + 1 = 0 . В нём a = 5, b = 6, c = 1. Если сложить “крайние” коэффициенты a и c , получим 5+1 = 6, что как раз равно “среднему” коэффициенту b . Значит, можем обойтись без дискриминанта! Сразу же записываем:

x_1=-1,
x_2=-\frac{c}{a}=\frac{-1}{5}=-0,2

Лайфхак третий (теорема, обратная теореме Виета). Если a = 1, то

Рассмотрим уравнение x 2 – 12x + 35 = 0. В нём a = 1, b = -12, c = 35. Ни под первый, ни под второй лайфхак оно не подходит – условия не соблюдаются. Если бы оно подходило под первый или под второй, то мы бы обошлись без теоремы Виета.

Само использование теоремы Виета подразумевает понимание некоторых полезных приёмов.

Первый приём . Не стоит стесняться записывать саму систему вида \begin{cases} x_1+x_2 = -b \\ x_1 \cdot x_2 = c \end{cases} , которая получается при использовании теоремы Виета. Не нужно пытаться во что бы ты ни стало решить уравнение абсолютно устно, без письменных пометок, как это делают “продвинутые пользователи”.

Для нашего уравнения x 2 – 12x + 35 = 0 эта система имеет вид

\begin{cases} x_1+x_2 = 12 \\ x_1 \cdot x_2 = 35 \end{cases}

Теперь нам нужно устно подобрать числа x_1 и x_2 , которые удовлетворяют нашей системе, т.е. в сумме дают 12, а при умножении 35.

Так вот, второй приём заключается в том, что начинать подбор нужно не с суммы, а с произведения. Посмотрим на второе уравнение системы и зададимся вопросом: какие числа при умножении дают 35? Если всё в порядке с таблицей умножения, то сразу приходит на ум ответ: 7 и 5. И только теперь подставим эти числа в первое уравнение: будем иметь 7 + 5 = 12, что является верным равенством. Итак, числа 7 и 5 удовлетворяют обоим уравнениям, поэтому мы сразу пишем:

x_1 = 7, x_2 = 5

Третий приём заключается в том, что если числа не удаётся подобрать быстро (в течение 15-20 секунд), то вне зависимости от причины нужно считать дискриминант и использовать формулу корней. Почему? Потому что корни могут не подбираться, если уравнение их вообще не имеет (дискриминант отрицательный), или же корни представляют собой числа, не являющиеся целыми.

Тренировочные упражнения по решению квадратных уравнений

Попрактикуйтесь! Попробуйте решить следующие уравнения. На каждое уравнение смотрите в следующей последовательности:

  • если уравнение подходит под первый лайфхак (когда a + b + c = 0), то решаем с его помощью;
  • если уравнение подходит под второй лайфхак (когда a + c = b), то решаем с его помощью;
  • если уравнение подходит под третий лайфхак (теорему Виета), решаем с его помощью;
  • и только в самом крайнем случае – если ничего не подошло и/или с помощью теоремы Виета решить не получилось – считаем дискриминант. Еще раз: дискриминант – в самую последнюю очередь !
  1. Решите уравнение x 2 + 3x + 2 = 0
    Просмотреть решение и ответ

    См. лайфхак второй
    В данном уравнении a = 1, b = 3, c = 2. Таким образом, a + c = b, откуда x_1=-1, x_2 = -\frac{c}{a} = -\frac{2}{1}=-2 .
    Ответ: -1, -2.

  2. Решите уравнение x 2 + 8x – 9 = 0
    Просмотреть решение и ответ

    См. лайфхак первый
    В данном уравнении a = 1, b = 8, c = -9. Таким образом, a + b + c = 0, откуда x_1=1, x_2 = \frac{c}{a} = \frac{-9}{1}=-9 .
    Ответ: 1, -9.

  3. Решите уравнение 15x 2 – 11x + 2 = 0
    Просмотреть решение и ответ

    Данное уравнение (единственное из всего списка) не попадает ни под один из лайфхаков, поэтому решать его будем по формуле корней:
    D=b^2-4ac = (-11)^2 – 4 \cdot 15 \cdot 2 = 121 – 120 = 1. x_1=\frac{11-1}{2 \cdot 15}=\frac{10}{30}=\frac{1}{3} x_2= \frac{11+1}{2 \cdot 15}=\frac{12}{30}=\frac{2}{5} Ответ: \frac{1}{3}, \frac{2}{5}.

  4. Решите уравнение x 2 + 9x + 20 = 0
    Просмотреть решение и ответ


    \begin{cases} x_1+x_2 = -9 \\ x_1 \cdot x_2 = 20 \end{cases}
    Подбором устанавливаем, что x_1 = -4, x_2 = -5 .
    Ответ: -4, -5.

  5. Решите уравнение x 2 – 7x – 30 = 0
    Просмотреть решение и ответ

    См. лайфхак третий (теорема Виета)
    В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = 7 \\ x_1 \cdot x_2 = -30 \end{cases}
    Подбором устанавливаем, что x_1 = 10, x_2 = -3 .
    Ответ: 10, -3.

  6. Решите уравнение x 2 – 19x + 18 = 0
    Просмотреть решение и ответ

    См. лайфхак первый
    В данном уравнении a = 1, b = -19, c = 18. Таким образом, a + b + c = 0, откуда x_1=1, x_2 = \frac{c}{a} = \frac{18}{1}=18 .
    Ответ: 1, 18.

  7. Решите уравнение x 2 + 7x + 6 = 0
    Просмотреть решение и ответ

    См. лайфхак второй
    В данном уравнении a = 1, b = 7, c = 6. Таким образом, a + c = b, откуда x_1=-1, x_2 = -\frac{c}{a} = -\frac{6}{1}=-6 .
    Ответ: -1, -6.

  8. Решите уравнение x 2 – 8x + 12 = 0
    Просмотреть решение и ответ

    См. лайфхак третий (теорема Виета)
    В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = 8 \\ x_1 \cdot x_2 = 12 \end{cases}
    Подбором устанавливаем, что x_1 = 6, x_2 = 2 .
    Ответ: 6, 2.

  9. Решите уравнение x 2 – x – 6 = 0
    Просмотреть решение и ответ

    См. лайфхак третий (теорема Виета)
    В данном уравнении a = 1, поэтому можем записать, что \begin{cases} x_1+x_2 = 1 \\ x_1 \cdot x_2 = -6 \end{cases}
    Подбором устанавливаем, что x_1 = 3, x_2 = -2 .
    Ответ: 3, -2.

  10. Решите уравнение x 2 – 15x – 16 = 0
    Просмотреть решение и ответ

    См. лайфхак второй
    В данном уравнении a = 1, b = -15, c = -16. Таким образом, a + c = b, откуда x_1=-1, x_2 = -\frac{c}{a} = -\frac{-16}{1}=16 .
    Ответ: -1, 16.

  11. Решите уравнение x 2 + 11x – 12 = 0
    Просмотреть решение и ответ

    См. лайфхак первый
    В данном уравнении a = 1, b = 11, c = -12. Таким образом, a + b + c = 0, откуда x_1=1, x_2 = \frac{c}{a} = \frac{-12}{1}=-12 .
    Ответ: 1, -12.

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Первое уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c /a ) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

», то есть уравнения первой степени. В этом уроке мы разберем, что называют квадратным уравнением и как его решать.

Что называют квадратным уравнением

Важно!

Степень уравнения определяют по наибольшей степени, в которой стоит неизвестное.

Если максимальная степень, в которой стоит неизвестное — «2 », значит, перед вами квадратное уравнение.

Примеры квадратных уравнений

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0,25x = 0
  • x 2 − 8 = 0

Важно! Общий вид квадратного уравнения выглядит так:

A x 2 + b x + c = 0

«a », «b » и «c » — заданные числа.
  • «a » — первый или старший коэффициент;
  • «b » — второй коэффициент;
  • «c » — свободный член.

Чтобы найти «a », «b » и «c » нужно сравнить свое уравнение с общим видом квадратного уравнения «ax 2 + bx + c = 0 ».

Давайте потренируемся определять коэффициенты «a », «b » и «c » в квадратных уравнениях.

5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Уравнение Коэффициенты
  • a = 5
  • b = −14
  • с = 17
  • a = −7
  • b = −13
  • с = 8
1
3
= 0
  • a = −1
  • b = 1
  • с =
    1
    3
x 2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • с = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • с = −8

Как решать квадратные уравнения

В отличии от линейных уравнений для решения квадратных уравнений используется специальная формула для нахождения корней .

Запомните!

Чтобы решить квадратное уравнение нужно:

  • привести квадратное уравнение к общему виду «ax 2 + bx + c = 0 ». То есть в правой части должен остаться только «0 »;
  • использовать формулу для корней:

Давайте на примере разберем, как применять формулу для нахождения корней квадратного уравнения. Решим квадратное уравнение.

X 2 − 3x − 4 = 0


Уравнение « x 2 − 3x − 4 = 0 » уже приведено к общему виду «ax 2 + bx + c = 0 » и не требует дополнительных упрощений. Для его решения нам достаточно применить формулу нахождения корней квадратного уравнения .

Определим коэффициенты «a », «b » и «c » для этого уравнения.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

С её помощью решается любое квадратное уравнение.

В формуле «x 1;2 = » часто заменяют подкоренное выражение
«b 2 − 4ac » на букву «D » и называют дискриминантом . Более подробно понятие дискриминанта рассматривается в уроке «Что такое дискриминант ».

Рассмотрим другой пример квадратного уравнения.

x 2 + 9 + x = 7x

В данном виде определить коэффициенты «a », «b » и «c » довольно сложно. Давайте вначале приведем уравнение к общему виду «ax 2 + bx + c = 0 ».

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0
x 2 − 6x + 9 = 0

Теперь можно использовать формулу для корней.

X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x =

6
2

x = 3
Ответ: x = 3

Бывают случаи, когда в квадратных уравнениях нет корней. Такая ситуация возникает, когда в формуле под корнем оказывается отрицательное число.

Квадратное уравнение, или алгебраическое уравнение 2-й степени с одним неизвестным в общем виде записывается следующим образом:

Ax 2 + bx + c = 0,

  • a, b, c — известные коэффициенты, причем a ≠ 0.
  • x — неизвестное.

3x 2 + 8x - 5 = 0.

2. Виды квадратных уравнений

Разделив обе части уравнения на a , получим приведенное квадратное уравнение :


x 2 + px + q = 0,
  • p = b/a
  • q = c/a

Если один из коэффициентов b, c или оба одновременно равны 0, то квадратное уравнение называется неполным .

  • x 2 +8x-5=0 — полное приведенное квадратное уравнение.
  • 3x 2 -5=0 — не полное не приведенное квадратное уравнение.
  • x 2 -8x=0 — не полное приведенное квадратное уравнение.

Неполное квадратное уравнение вида

X 2 = m

самое простое и самое важное, т.к. к нему приводится решение всякого квадратного уравнения.

Возможны три случая:

  • m = 0, x = 0
  • m > 0, x = ±√‾m
  • m < 0, x = ±i√‾m. Где i — мнимая единица, равная √‾-1.

3. Решение квадратного уравнения

Корни неприведенного полного квадратного уравнения находятся по формуле

x = (-b ± √‾(b 2 - 4ac)) / 2a

x = (7 ± √‾(1)) / 6

4. Свойства корней квадратного уравнения. Дискриминант.

Согласно формуле корней квадратного уравнения могут быть три случая, определяемых подкоренным выражением (b 2 - 4ac). Оно называется дискриминантом (различающим).

Обозначая дискриминант буквой D, можно записать:

  • D > 0, уравнение имеет два различных действительных корня.
  • D = 0, уравнение имеет два равных между собой действительных корня.
  • D < 0, уравнение имеет два различных мнимых корня.

x = (-b ± √‾(b 2 - 4ac)) / 2a

x = (7 ± √‾(7 2 - 4×3×4)) / (2×3)

x = (7 ± √‾(1)) / 6

5. Формулы полезные в жизни

Часто возникают задачи пересчета объема в площадь или в длину и обратная задача -- пересчет площади в объем. Например, доски продаются кубами (кубометрами), а нам требуется рассчитать какую площадь стены можно обшить досками содержащимися в определенном объеме, см.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Дискриминант позволяет решать любые квадратные уравнения с помощью общей формулы, которая имеет следующий вид:

Формула дискриминанта зависит от степени многочлена. Вышеописанная формула подойдет для решения квадратных уравнений следующего вида:

Дискриминант имеет следующие свойства, которые необходимо знать:

* "D" равен 0, когда многочлен имеет кратные корни (равные корни);

* "D" является симметрическим многочленом относительно корней многочлена и поэтому является многочленом от его коэффициентов; более того, коэффициенты этого многочлена целые независимо от расширения, в котором берутся корни.

Допустим, нам дано квадратное уравнение следующего вида:

1 уравнение

По формуле имеем:

Поскольку \, то уравнение имеет 2 корня. Определим их:

Где можно решить уравнение через дискриминант онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте.А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Просмотров