Синдром истощения митохондриальной днк симптомы. Митохондриальные заболевания у детей

Выделяют большое число хронических заболеваний, одним из патогенетических звеньев которых является вторичная митохондриальная недостаточность. Их перечень далеко не полон и расширяется по сей день.

Все эти нарушения полиморфны, могут иметь различную степень выраженности и представлять интерес для медицинских специалистов самых различных областей - невропатологов, кардиологов, неонатологов, нефрологов, хирургов, урологов, оториноларингологов, пульмонологов и др.

По нашим данным, не менее трети всех детей-инвалидов в симптомокомплексе своих заболеваний имеют признаки полисистемного нарушения клеточной энергетики. Следует отметить, что за последние годы значительно увеличилось число детей с заболеваниями, сопровождающимися высокой вероятностью тканевой гипоксии.

Проведенные недавно в Московском НИИ педиатрии и детской хирургии исследования у детей, поступивших в генетическую клинику с недифференцированными нарушениями физического и нервно-психического развития, показали, что у половины из них отмечены нарушения клеточного энергообмена. Сотрудниками этого института впервые обнаружено наличие митохондриальных нарушений при таких патологиях у детей: болезни соединительной ткани (синдромы Марфана и Элерса-Данло), туберозный склероз, ряд неэндокринных синдромов, сопровождающихся задержкой роста (остеохондродисплазии, синдромы Аарскога, Сильвера-Рассела и др.), выявлено влияние митохондриальной недостаточности на течение ряда кардиологических, наследственных, хирургических и других заболеваний. Совместно с сотрудниками Смоленской медицинской академии описана декомпенсирующая митохондриальная недостаточность при сахарном диабете 1 типа у детей со сроком заболевания более 5 лет.

Особо следует отметить полисистемные митохондриальные дисфункции, вызванные экопатогенными факторами. Среди последних - как хорошо известные (например, угарный газ, цианиды, соли тяжелых металлов), так и описанные сравнительно недавно (в первую очередь побочные действия ряда лекарственных веществ - азидотимидина, вальпроатов, аминогликозидов и некоторых других). Кроме того, к этой же группе относятся митохондриальные дисфункции, вызванные рядом алиментарных нарушений (прежде всего дефицит витаминов группы В).

Наконец, отдельно нужно упомянуть о том, что, по мнению многих исследователей, увеличение числа митохондриальных дисфункций является если не основным, то одним из важнейших механизмов старения. На международном симпозиуме по митохондриальной патологии, состоявшемся в Венеции в 2001 г., было сообщено об открытии специфических мутаций митохондриальной ДНК, появляющихся при старении. Эти мутации не обнаруживаются у молодых пациентов, а у лиц пожилого возраста определяются в различных клетках организма с частотой свыше 50%.

Патогенез.

Снижение доставки кислорода к нервной клетке в условиях острой ишемии приводит к ряду регуляторных функционально-метаболических изменений в митохондриях, среди которых нарушения состояния митохондриальных ферментных комплексов (МФК) играют ведущую роль и которые приводят к подавлению аэробного синтеза энергии. Общая ответная реакция организма на острую кислородную недостаточность характеризуется активацией срочных регуляторных компенсаторных механизмов. В нейрональной клетке включаются каскадные механизмы внутриклеточной сигнальной трансдукции, ответственные за экспрессию генов и формирование адаптивных признаков. Такая активация проявляется уже через 2-5 минут кислородного голодания и протекает на фоне снижения дыхания, связанного с подавлением МФК-1. Подтверждением вовлечения в адаптивные процессы внутриклеточных сигнальных систем, необходимых для формирования геномзависимых адаптивных реакций, являются активация протеинкиназ -- конечных звеньев этих систем, открытие мито-КАТФ-канала, усиление связанного с ним АТФ-зависимого транспорта К+, повышенная генерация H2O2.

На этом этапе приспособительных реакций ключевая роль отводится семействам так называемых ранних генов, продукты которых регулируют экспрессию генов позднего действия. На сегодняшний день установлено, что в мозге к таким генам относятся NGFI-A, c-jun, junB, c-fos, играющие важную роль в процессах нейрональной пластичности, обучения, выживаемости/гибели нейронов. В том случае, когда прекондиционирование оказывало защитное действие и корригировало нарушения, вызванные тяжелым гипоксическим воздействием в чувствительных к гипоксии структурах мозга, наблюдалось повышение экспрессии мРНк всех этих генов, так же как и мРНК генов митохондриальных антиоксидантов.

Более длительное пребывание в условиях сниженного содержания кислорода сопровождается переходом на новый уровень регуляции кислородного гомеостаза, который характеризуется экономизацией энергетического обмена (изменением кинетических свойств ферментов окислительного метаболизма, которому сопутствует увеличение эффективности окислительного фосфорилирования, появлением новой популяции мелких митохондрий с набором ферментов, позволяющих им работать в этом новом режиме). Кроме того, в данных условиях адаптация к гипоксии на клеточном уровне тесно связана с транскрипционной экспрессией индуцируемых гипоксией генов позднего действия, которые участвуют в регуляции множественных клеточных и системных функций и необходимы для формирования адаптивных признаков. Известно, что при низких концентрациях кислорода этот процесс контролируется прежде всего специфическим транскрипционным фактором, индуцируемым при гипоксии во всех тканях (HIF-1). Этот фактор, открытый в начале 90-х годов, функционирует как главный регулятор кислородного гомеостаза и является механизмом, с помощью которого организм, отвечая на тканевую гипоксию, контролирует экспрессию белков, ответственных за механизм доставки кислорода в клетку, т.е. регулирует адаптивные ответы клетки на изменения оксигенации тканей.

В настоящее время для него идентифицировано более 60 прямых генов-мишеней. Все они способствуют улучшению доставки кислорода (эритропоэза, ангиогенеза), метаболической адаптации (транспорту глюкозы, усилению гликолитической продукции АТФ, ионному транспорту) и клеточной пролиферации. Продукты регулируемых HIF-1 действуют на разных функциональных уровнях. Конечным результатом такой активации является увеличение поступления O2 в клетку.

Идентификация и клонирование HIF-1 позволили установить, что он представляет собой гетеродимерный redox-чувствительный белок, состоящий из двух субъединиц: индуцибельно экспрессируемой кислородочувствительной субъединицы HIF-1б и конститутивно экспрессируемой субъединицы HIF-1в (транслокатор арилгидрокарбонового ядерного рецептора -- aryl hydrocarbon receptor nuclear translocator -- ARNT). Гетеродимеризуясь с арилкарбоновым рецептором (AHR), он образует функциональный диоксиновый рецептор. Известны и другие белки семейства HIF-1б: HIF-2б, HIF-3б. Все они принадлежат к семейству основных белков, содержащих в аминокислотной концевой части каждой субъединицы базисный домен «спираль -- петля -- спираль» (basic helix-loop-helix -- bHLH), характерный для самых различных транскрипционных факторов и необходимый для димеризации и связывания ДНК.

HIF-1б состоит из 826 аминокислотных остатков (120 kD) и содержит два транскрипционных домена в C-терминальном конце. В нормоксических условиях его синтез происходит с невысокой скоростью и его содержание минимально, так как он подвергается быстрой убиквитинации и деградации протеосомами. Этот процесс зависит от взаимодействия имеющегося в первичной структуре HIF-1б и специфичного для него кислородозависимого домена деградации (ODDD -- oxygen dependant domen degradation) с широко распространенным в тканях белком von Hippel Lindau (VHL) -- супрессором опухолевого роста, который действует как протеинлигаза.

Молекулярной основой для такой регуляции является O2-зависимое гидроксилирование двух его пролиновых остатков P402 и P564, входящих в структуру HIF-1б, одним из трех ферментов, известных под общим названием «белки пролилгидроксилазного домена (PHD)», или «HIF-1б-пролилигидроксилазы», что необходимо для связывания HIF-1б с белком VHL. Обязательными компонентами процесса являются также б-кетоглутарат, витамин C и железо. Наряду с этим происходит гидроксилирование остатка аспарагина в C-терминальном трансактивационном домене (C-TAD), что приводит к подавлению транскрипционной активности HIF-1б. После гидроксилирования остатков пролина в ODDD и остатка аспарагина происходит связывание HIF-1б с белком VHL, которое делает доступной эту субъединицу протеосомной деградации.

В условиях резкого дефицита кислорода кислородозависимый процесс гидроксилирования пролиловых остатков, характерный для нормоксии, подавляется. В силу этого VHL не может связаться с HIF-1б, его деградация протеосомами ограничивается, что делает возможным его аккумуляцию. В отличие от этого p300 и CBP могут связываться с HIF-1б, так как этот процесс не зависит от аспарагинилгидроксилирования. Это обеспечивает активацию HIF-1б, его транслокацию в ядро, димеризацию с HIF-1в, приводящую к конформационным изменениям, образованию транскрипционного активного комплекса (HRE), запускающего активацию широкого спектра HIF-1-зависимых генов-мишеней и синтез защитных адаптивных белков в ответ на гипоксию.

Вышеприведенные механизмы внутриклеточной сигнальной трансдукции происходят в клетке при ее адаптации к гипоксии. В случае, когда наступает дезадаптация, в клетке накапливается значительная концентрация АФК, активизируются процессы ее апоптической гибели.

В числе первых можно назвать, в частности, переход фосфатидилсерина в наружный мембранный слой и фрагментацию ДНК под действием АФК и NO. В этой мембране фосфатидилсерин обычно присутствует только во внутреннем липидном слое. Такое асимметричное распределение данного фосфолипида обусловлено действием особой транспортной ATPазы, переносящей фосфатидилсерин из внешнего липидного слоя плазматической мембраны во внутренний. Эта ATPаза либо инактивируется окисленной формой фосфатидилсерина, либо просто «не узнает» окисленный фосфолипид. Вот почему окисление фосфатидилсерина посредством АФК ведет к его появлению во внешнем слое плазматической мембраны. По-видимому, существует специальный рецептор, обнаруживающий фосфатидилсерин в наружном липидном слое. Предполагается, что этот рецептор, связав фосфатидилсерин, шлет внутрь клетки сигнал апоптоза.

Фосфатидилсерин играет ключевую роль в так называемом принудительном апоптозе, вызываемом определенным типом лейкоцитов. Клетка с фосфатидилсерином во внешнем слое клеточной мембраны «узнается» этими лейкоцитами, которые инициируют ее апоптоз. Один из апоптогенных механизмов, используемых лейкоцитами, состоит в том, что лейкоциты начинают выделять в межклеточное пространство вблизи клетки-мишени белки перфорин и гранзимы. Перфорин проделывает отверстия во внешней мембране клетки-мишени. Гранзимы входят в клетку и запускают в ней апоптоз.

Иной способ, используемый лейкоцитом для принуждения клетки-мишени к вхождению в апоптоз, состоит в ее бомбардировке супероксидом, образующимся снаружи лейкоцита посредством специальной трансмембранной дыхательной цепи плазматической мембраны. Эта цепь окисляет внутриклеточный NADPH, с которого электроны переносятся на флавин и далее на особый цитохром b, способный окисляться кислородом с выделением супероксида снаружи лейкоцита. Супероксид и другие образующиеся из него АФК окисляют фосфатидилсерин плазматической мембраны клетки-мишени, тем самым усиливая апоптозный сигнал, посылаемый клетке этим фосфолипидом.

Кроме того, лейкоциты включают фактор некроза опухоли. TNF связывается с его рецептором на внешней стороне плазматической мембраны клетки-мишени, что активирует сразу несколько параллельных путей запуска апоптоза. В одном из них происходит образование активной каспазы-8 из прокаспазы-8. Каспаза-8 -- протеаза, расщепляющая цитозольный белок Bid с образованием его активной формы tBid (truncated Bid). tBid меняет конформацию другого белка, Bax, вызывая образование проницаемого для белков канала во внешней мембране митохондрий, что приводит к их выходу из межмембранного пространства в цитозоль.

Разнообразие путей АФК-зависимого апоптоза иллюстрирует рис. 1. Истинная картина, по всей вероятности, еще более сложна, так как помимо TNF есть и другие внеклеточные индукторы апоптоза (цитокины), действующие каждый через свой собственный рецептор. Кроме того, существуют антиапоптозные системы, противостоящие проапоптозным системам. Среди них белки типа Bcl-2, тормозящие проапоптическую активность Bax; уже упоминавшиеся ингибиторы каспаз (IAP); белок NFkB (nuclear factor kB), индуцируемый посредством TNF. NFkB включает группу генов, среди которых есть те, которые кодируют супероксиддисмутазу и другие антиоксидантные и антиапоптозные белки.

Все эти сложности отражают то очевидное обстоятельство, что для клетки «решение покончить с собой» есть крайняя мера, когда исчерпаны все другие возможности предотвращения ее ошибочных действий.

Приняв во внимание изложенное выше, можно представить себе следующий сценарий событий, призванных защитить организм от АФК, генерируемых митохондриями. Образовавшись в митохондриях, АФК вызывают открытие поры и, как следствие, -- выход цитохрома С в цитозоль, что немедленно включает дополнительные антиоксидантные механизмы, а затем митоптоз. Если в митоптоз уходит лишь небольшая часть внутриклеточной популяции митохондрий, концентрации цитохрома С и других митохондриальных проапоптических белков в цитозоле не достигают значений, необходимых, чтобы активировать апоптоз. Если же все больше и больше митохондрий становятся суперпродуцентами АФК и «открывают кингстоны», эти концентрации возрастают и начинается апоптоз клетки, содержащей много дефектных митохондрий. В результате происходит очистка ткани от клеток, митохондрии которых образуют слишком много АФК.

Таким образом, можно говорить о митохондриальной дисфункции как о новом патобиохимическом механизме нейродегенеративных расстройств широкого спектра. В настоящий момент выделяют два вида митохондриальной дисфункции -- первичную, как следствие врожденного генетического дефекта, и вторичную, возникающую под действием различных факторов: гипоксии, ишемии, оксидативного и нитрозирующего стресса, экспрессии провоспалительных цитокинов. В современной медицине все более значимое место занимает учение о полисистемных нарушениях клеточного энергообмена, так называемой митохондриальной патологии, или митохондриальной дисфункции.

Митохондриальные дисфункции -- разнородная группа патологии, вызванная генетическими, биохимическими и структурно-функциональными дефектами митохондрий с нарушением клеточно-тканевого дыхания. Классификация митохондриальной дисфункции имеет свою историю. Одной из первых была схема, основанная на биохимических дефектах метаболизма. Недостаточно глубокой оказалась и систематизация по клиническим синдромам, среди них ранее выделяли:

  • 1) синдромы установленной митохондриальной природы;
  • 2) синдромы предположительно митохондриальной природы;
  • 3) синдромы -- следствия митохондриальной патологии.

Первое упоминание о болезни, связанной с дефектом митохондрий, относится к 1962 г.: R. Luft и соавт. описали случай заболевания, при котором имело место нарушение сопряжения дыхания и фосфорилирования в митохондриях скелетных мышц у пациента с нетиреоидным гиперметаболизмом. В последующие годы были описаны клинические, биохимические и морфологические аспекты митохондриальных энцефаломиопатий. В развитии этого направления большую роль сыграло использование модифицированной окраски по Гомори, с помощью которой удавлось выявлять в скелетных мышцах волокна с измененными митохондриями -- так называемые ragged-red волокна (RRF).

Позднее, с открытием митохондриального генома и мутаций мДНК или яДНК, удалось применить генетический принцип классификации для первичной, врожденной митохондриальной дисфункции -- сначала в упрощенном виде, затем в усложненном. Ключевая область митохондриальной патологии -- наследственные синдромы, в основе которых лежат мутации генов, ответственных за митохондриальные белки (синдромы Кернса -- Сейра, MELAS, MERRF, Пирсона, Барта и др.). Митохондриальные дисфункции проявляются широким рядом клинических симптомов. Эти мутации способны вовлекать тРНК, рРНК или структурные гены и могут выражаться биохимически как дефекты всей электронно-транспортной цепи или как дефекты отдельных энзимов.

На протяжении 90-х годов XX столетия идентификация множества митохондриальных дефектов, обусловливающих клинически совершенно разные расстройства, ставила в тупик клиницистов в отношении диагностики гетерогенных и сложных синдромов, характеризующихся следующими признаками:

  • -- скелетные мышцы: низкая толерантность к физической нагрузке, гипотония, проксимальная миопатия, включающая фациальные и фарингеальные мышцы, офтальмопарез, птоз;
  • -- сердце: нарушение сердечного ритма, гипертрофическая миокардиопатия;
  • -- ЦНС: атрофия зрительного нерва, пигментная ретинопатия, мио­клонус, деменция, инсультоподобные эпизоды, расстройства психики;
  • -- периферическая нервная система: аксональная невропатия, нарушение двигательной активности гастроинтестинального тракта;
  • -- эндокринная система: диабет, гипопаратиреоидизм, нарушение экзокринной функции поджелудочной железы, низкий рост.

Поскольку первичные митохондриальные дисфункции проявляются у человека целым рядом различных симптомов, клиницисты попробовали объединить некоторые группы наиболее часто встречающихся комбинаций симптомов в синдромы:

  • · MELAS -- Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like episodes (митохондриальная миопатия, энцефалопатия, лактат-ацидоз, инсультоподобные эпизоды).
  • · CPEO/PEO -- External Ophtalmoplegia, Ophtalmoplegia plus syndrome (офтальмоплегия, связанная с поражением глазодвигательных мышц, офтальмоплегия плюс синдром).
  • · KSS -- Kearns -- Sayre Syndrome -- retinopathy, proximal muscle weakness, cardiac arrhythmia and ataxia (ретинопатия, слабость проксимальных мышц, аритмия, атаксия).
  • · MERRF -- Myoclonic Epilepsy associated with Ragged Red Fibres (миоклоническая эпилепсия с обнаружением RRF).
  • · LHON -- Leber Hereditary Optic Neuropathy (врожденная невропатия глазного нерва).
  • · Leig syndrome -- infantile subacute necrotizing encephalopathy (инфантильная подострая некротизирующая энцефалопатия).
  • · NAPR -- Neuropathy, Ataxia and Pigmentary Retinopathy (невропатия, атаксия и пигментная ретинопатия).

Еще не так давно вопросы митохондриальной дисфункции интересовали только исследователей и отдельных лечащих врачей. С некоторого времени о ней все больше стали говорить доктора, использующие биомедицинский подход, и родители детей с РАС.

Митохондриальный комплекс – это часть клеток, ответственная за выработку энергии. В дисфункции митохондрий видят одну из возможных причин многих проявлений аутизма.

Сразу отмечу, что имеется просто гигантское количество данных о митохондриях, которые нуждаются в систематизации, обобщении и создании рабочей модели. Генетика, сложные химические реакции, движение электронов и проницаемость клеточных мембран – все эти вопросы имеют отношение к проблеме эффективности функционирования митохондрий у больных РАС.

У большого числа детей с аутизмом наблюдаются сходные симптомы, которые могут быть вызваны недостаточной энергией клеток :

  • Низкая активность гладкой мускулатуры. Это особенно пагубно сказывается на работе органов ЖКТ, что приводит к рефлюксу (забросу содержимого желудка в пищевод), дискинезиям, запору и разрастанию дрожжевых грибков из-за долгого нахождения пищи в кишечнике.
  • Общая слабость мышц. Это приводит к неуклюжести и плохой крупной моторике, что в свою очередь вызывает задержки в развитии.
  • Снижение эффективности детоксикации организма. Выполняющие детоксикацию органы, такие как печень, требуют очень большого количества энергии. Если ее нет, то не все токсины будут переработаны. В результате организм отравляется все больше и больше, а поступающие с пищей и водой потенциально вредные вещества оказывают неожиданно сильное действие.
  • Недостаточная подпитка энергией нервной системы. Это приводит к искажению сигналов в сенсорной системе. Когда нервные импульсы от мозга к мышцам проходят с большим трудом, это еще больше препятствует плавности и четкости движений.
  • Снижение энергетического потенциала клеток головного мозга. Лишенный достаточной энергии мозг не сможет полноценно выполнять свои функции: производить и поглощать нейромедиаторы, выращивать новые клетки, избавляться от старых и передавать сигналы. Как результат могут наблюдаться проблемы с памятью и концентрацией.

Если ребенок демонстрирует перечисленные симптомы, то задача врача - проверить работу всех систем организма и решить, необходимы ли лабораторные исследования митохондриальной функции.

Читайте также Влияние диеты на течение аутизма: где и как искать шансы на улучшение

Можно предполагать, что не все состояния, сопровождающие РАС, являются необратимыми. Насыщение определенных дефицитов, к которым относится и дисфункция митохондрий, позволит предоставить организму ребенка ту энергию, которой ему так остро не хватает.

В результате мы сможет наблюдать улучшение работы почти всех систем организма, что позволит повысить обучаемость пациента и облегчит его интеграцию в общество.

Перечень факторов и веществ, приводящих к ухудшению работы митохондрий :

  • инфекции, особенно вирусные;
  • воспалительный процесс;
  • высокая температура;
  • обезвоживание;
  • длительный голод;
  • сильная жара или мороз;
  • парацетамол;
  • нестероидные противовоспалительные препараты;
  • антипсихотические средства;
  • антидепрессанты;
  • противоэпилептические средства;
  • анестезия;
  • тяжелые металлы;
  • инсектициды;
  • сигаретный дым.

Родителям детей с РАС следует избегать следующих обстоятельств:

  1. Прием детьми алкоголя
  2. Нахождение детей рядом с сигаретным дымом
  3. Прием в пищу блюд с глутаматом натрия (почти все переработанные продукты, которые можно найти на полках супермаркета)
  4. Использование при высокой температуре парацетамола (принимайте вместо него ибупрофен, который более безопасен)
  5. Прием антипсихотических средств.

Вот список антибиотиков , которые ухудшают работу митохондриальной системы:

  • Линезолид
  • Рифампицин
  • Тетрациклин
  • Хлорамфеникол
  • Имипенем
  • Пенициллин
  • Цефалоспорины
  • Хинолоны (ципрофлоксацин, левофлоксацин, офлоксацин)
  • Макролиды (азитромицин, кларитромицин, эритромицин)
  • Сульфаниламид ко-тримоксазол

Лечение митохондриальных расстройств лучше всего проводить с помощью:

  1. Кетогенной диеты (большое количество жиров, достаточное – белков, низкое – углеводов)
  2. Используя витамины и пищевые добавки, которые помогут выправить ситуацию:
  • Витамин В12 в виде подкожных инъекций
  • Комплекс витаминов группы В, например B-50. Это все витамины группы В по 50мг каждый
  • S-аденозилметионин (SAM, адеметионин)
  • L-цистеин и глутатион
  • Коэнзим Q10
  • Экстракт Гинко Билоба
  • Комплексы антиоксидантов, в которые входят витамины А, С, Е и минералы селен и цинк

Митохондриальные болезни — это группа наследственной патологии, возникающей в результате нарушений клеточной энергетики, характеризующаяся полиморфизмом клинических проявлений, выражающаяся в преимущественном поражении центральной нервной системы и мышечной системы, а также других органов и систем организма .

Альтернативное определение митохондриальной патологии гласит, что это обширная группа патологических состояний, обусловленных генетическими, структурными и биохимическими дефектами митохондрий, нарушением тканевого дыхания и, как следствие, недостаточностью энергетического обмена.

Как указывает A. Munnich, «митохондриальные заболевания могут вызывать любой симптом, в любой ткани, в любом возрасте, при любом типе наследования» .

Митохондриальные дыхательные цепи — главный конечный путь аэробного метаболизма. Поэтому митохондриальную патологию нередко называют «болезнями дыхательной цепи митохондрий» (БДЦМ); это сравнительно новый класс болезней.

Исторические аспекты митохондриальной патологии

R. Luft и соавт. (1962) обнаружили взаимосвязь между мышечной слабостью и нарушениями процессов окислительного фосфорилирования в мышечной ткани . S. Nass и M. Nass (1963) открыли существование собственного генетического аппарата митохондрий (обнаружены несколько копий кольцевой хромосомы) . В 1960-1970 гг. появилась концепция митохондриальных болезней, то есть патологии, этиологически опосредованной митохондриальной дисфункцией. В 1980-е гг. были получены точные молекулярно-генетические доказательства митохондриальной природы ряда заболеваний (болезнь Лебера, синдром Пирсона) .

Этиопатогенетические аспекты митохондриальной патологии

В зависимости от наличия основного метаболического дефекта принято рассматривать четыре основных группы митохондриальных болезней: 1) нарушения обмена пирувата; 2) дефекты обмена жирных кислот; 3) нарушения цикла Кребса; 4) дефекты электронного транспорта и окислительного фосфорилирования (OXPHOS) .

Причинами возникновения митохондриальной патологии являются мутации в генах, кодирующих белки, задействованные в процессах энергообмена в клетках (включая субъединицы комплекса пируватдегидрогеназы, ферменты цикла Кребса, компоненты цепи транспорта электронов, структурные белки цепи транспорта электронов (ЦТЭ), митохондриальные транспортеры внутренней мембраны, регуляторы митохондриального нуклеотидного пула, а также факторы, взаимодействующие с ДНК митохондрий (мтДНК) .

Митохондриальные нарушения связаны с большим числом болезней, не являющихся первичными митохондриальными цитопатиями. Тем не менее, при этих болезнях нарушения функций митохондрий вносят значимый вклад в патогенез и клинические проявления заболеваний. Описываемые болезни могут быть метаболическими, дегенеративными, воспалительными, врожденными/приобретенными мальформациями, а также неоплазмами.

Митохондрия является органеллой, которая присутствует практически в каждой клетке, за исключением зрелых эритроцитов. Именно поэтому митохондриальные болезни могут поражать любые системы и органы человеческого организма . В связи с этим правильнее называть эти состояния «митохондриальными цитопатиями» .

Основные особенности митохондриальных цитопатий включают выраженный полиморфизм клинических симптомов, мультисистемный характер поражения, вариабельность течения, прогрессирование и неадекватное реагирование на применяемую терапию.

Дыхательная цепь локализуется на внутренней мембране митохондрий и включает в себя пять мультиферментных комплексов, каждый из которых, в свою очередь, состоит из нескольких десятков субъединиц. Митохондриальная ДНК кодирует только 13 из белковых субъединиц дыхательной цепи, 2 белковых субъединицы мтРНК и 22 митохондриальных транспортных РНК (тРНК). Ядерный геном кодирует более 90% митохондриальных белков .

Конечным результатом окислительного фосфорилирования, происходящего в комплексах 1-γ, является производство энергии (АТФ). Аденозин трифосфат — основной источник энергии для клеток.

Митохондриальная ДНК тесно взаимодействует с ядерной ДНК (яДНК). В каждом из 5 дыхательных комплексов основная часть субъединиц кодируется яДНК, а не мтДНК. Комплекс I состоит из 41 субъединицы, из которых 7 кодируются мтДНК, а остальные — яДНК. Комплекс II имеет всего 4 субъединицы; большая их часть кодируется яДНК. Комплекс III представлен десятью субъединицами; кодирование мтДНК — 1, яДНК — 9. Комплекс IV имеет 13 субъединиц, из которых 3 кодируются мтДНК, а 10 — яДНК. Комплекс V включает 12 субъединиц, кодирование мтДНК — 2, яДНК — 10 .

Нарушения клеточной энергетики приводят к полисистемным заболеваниям. В первую очередь, страдают органы и ткани, являющиеся наиболее энергозависимыми: нервная система (энцефалопатии, полинейропатии), мышечная система (миопатии), сердце (кардиомиопатии), почки, печень, эндокринная система и другие органы и системы. До недавнего времени все эти заболевания определялись под многочисленными масками других нозологических форм патологии. К настоящему времени выявлено более 200 заболеваний, причиной которых являются мутации митохондриальной ДНК .

Митохондриальные болезни могут быть обусловлены патологией как митохондриального, так и ядерного генома. Как указывают P. F. Chinnery и соавт. (2004) и S. DiMauro (2004), мутации мтДНК были выявлены в 1 случае на 8000 населения, а распространенность митохондриальных заболеваний составляет порядка 11,5 случаев на 100 тысяч населения .

В каждой клетке находятся от нескольких сотен до нескольких тысяч органелл — митохондрий, содержащих от 2 до 10 кольцевых молекул митохондриальной ДНК, способных к репликации, транскрипции и трансляции, причем независимо от ядерной ДНК.

Генетические аспекты митохондриальной патологии

Митохондриальная генетика отличается от классической менделевской в трех важнейших аспектах: 1) материнское наследование (всю цитоплазму, вместе с находящимися в ней органеллами, потомки получают вместе с яйцеклеткой); 2) гетероплазмия — одновременное существование в клетке нормального (дикого) и мутантного типов ДНК; 3) митотическая сегрегация (оба типа мтДНК в процессе деления клетки могут распределяться случайным образом между дочерними клетками) .

Митохондриальная ДНК накапливает мутации более чем в 10 раз быстрее ядерного генома, так как она лишена защитных гистонов и ее окружение чрезвычайно богато реактивными видами кислорода, являющимися побочным продуктом метаболических процессов, протекающих в митохондриях. Пропорция мутантной мтДНК должна превышать критический пороговый уровень, прежде чем клетки начнут проявлять биохимические аномалии митохондриальных дыхательных цепей (пороговый эффект). Процентный уровень мутантной мтДНК может варьировать у индивидов внутри семей, а также в органах и тканях. В этом заключается одно из объяснений вариабельности клинической картины у больных с митохондриальными дисфункциями. Одни и те же мутации могут вызывать различные клинические синдромы (например, мутация A3243G — энцефалопатию с инсультоподобными пароксизмами — синдром MELAS, а также хроническую прогрессирующую наружную офтальмоплегию, сахарный диабет). Мутации в различных генах могут быть причиной одного и того же синдрома. Классическим примером такой ситуации является синдром MELAS .

Разновидности митохондриальной патологии

Если перечислить основные митохондриальные болезни, то в их числе окажутся следующие: митохондриальная нейрогастроинтестинальная энцефалопатия (MNGIE), синдром множественных делеций митохондриальной ДНК, липидная миопатия с нормальными уровнями карнитина, недостаточность карнитин пальмитоилтрансферазы, митохондриальный сахарный диабет, болезнь Альперса-Хуттенлохера, синдром Кернса-Сейра, болезнь Лебера (LHON), синдром Вольфрама, синдром MEMSA, синдром Пирсона, синдром SANDO, синдром MIRAS, синдром MELAS, синдром MERRF, синдром SCAE, синдром NARP, синдром Барта, синдром CPEO, синдром Ли и др. .

Наиболее часто в детском возрасте встречаются следующие клинические синдромы митохондриальной патологии: синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз и инсультоподобные пароксизмы), синдром MERRF (миоклонус-эпилепсия с рваными красными волокнами), синдром Кернса-Сейра (характеризуется птозом, офтальмоплегией, пигментным ретинитом, атаксией, нарушением сердечного проведения), синдром NARP (нейропатия, атаксия, пигментный ретинит), синдром Ли (подострая некротизирующая энцефаломиелопатия), болезнь Лебера (наследственная оптическая нейропатия) .

Имеется большой пул заболеваний, причиной которых является не мутации митохондриальной ДНК, а мутации ядерной ДНК, кодирующей работу митохондрий. К ним относятся следующие виды патологии: болезнь Барта (миопатия, кардиомиопатия, транзиторные нейтро- и тромбоцитопении), митохондриальная гастроинтестинальная энцефалопатия (аутосомно-рецессивное мультисистемное заболевание): птоз, офтальмоплегия, периферическая нейропатия, гастроинтестинальная дисфункция, приводящая к кахексии, лейкоэнцефалопатия. Возраст дебюта последнего заболевания весьма вариабелен — от периода новорожденности до 43 лет.

Диагностика митохондриальной патологии

Клинические критерии диагностики митохондриальных болезней сравнительно многочисленны: 1) миопатический симптомокомплекс (непереносимость физических нагрузок, мышечная слабость, снижение мышечного тонуса); 2) судороги (миоклонические или мультифокальные); 3) мозжечковый синдром (атаксия, интенционный тремор); 4) поражение глазо-двигательных нервов (птоз, наружная офтальмоплегия); 5) полинейропатия; 6) инсультоподобные пароксизмы; 7) мигренеподобные головные боли; 8) черепно-лицевая дисморфия; 9) дисметаболические проявления (рвота, эпизоды летаргии, комы); 10) дыхательные нарушения (апноэ, гипервентиляция, тахипноэ); 11) поражение сердца, печени, почек; 12) прогрессирующее течение заболевания .

В диагностике митохондриальных болезней используются следующие клинические критерии: 1) признаки поражения соединительной ткани (гипермобильный синдром, гиперэластичность кожи, нарушения осанки и др.); 2) нейродегенеративные проявления, лейкопатии при проведении магнитно-резонансной томографии (МРТ) головного мозга; 3) повторные эпизоды нарушения сознания или необъяснимые эпизоды рвоты у новорожденных; 4) необъяснимая атаксия; 5) отставание в умственном развитии без определенных причин; 6) отягощенный семейный анамнез; 7) внезапное ухудшение состояния ребенка (судороги, рвота, расстройства дыхания, вялость, слабость, нарушения мышечного тонуса — чаще мышечная гипотония, кома, летаргия; поражение печени и почек, не поддающееся обычной терапии) .

Лабораторные (биохимические) исследования нацелены в первую очередь на выявление у пациентов лактат-ацидоза и/или пируват-ацидоза. При этом следует помнить, что нормальные показатели молочной кислоты не исключают наличия митохондриального заболевания. Другие биохимические показатели, исследуемые при подозрении на наличие митохондриальной патологии, включают кетоновые тела в крови и моче, ацилкарнитины плазмы крови, а также содержание органических кислот и аминокислот в крови и моче .

M. V. Miles и соавт. (2008) предложили оценивать содержание мышечного коэнзима Q10 у детей с дефектом ферментов дыхательной цепи митохондрий .

Цитоморфоденситометрические исследования позволяют оценивать активность митохондрий лимфоцитов (снижение количества, увеличение объема, снижение активности).

Из инструментальных исследований (помимо методов нейровизуализации) используется биопсия скелетных мышц с проведением специфических гистохимических реакций — для выявления феномена «рваных красных волокон» (ragged red fibers — RRF) в полученном биоптате. Синдромами с «рваными красными волокнами» являются следующие: MELAS, MERRF, KSS, PEO (прогрессирующая наружная офтальмоплегия), а также синдром Пирсона. Синдромы без RRF: болезнь Leigh, NARP, LHON (наследственная оптическая нейропатия Лебера) .

Генетические методы исследований сводятся к определению наиболее частых мутаций и секвенированию митохондриальной ДНК.

Лечение митохондриальной патологии

Терапия митохондриальных болезней, к сожалению, не разработана. С позиций доказательной медицины считается, что эффективное лечение для этой представительной группы болезней отсутствует. Тем не менее, в различных странах мира используются фармакологические средства и биологически активные вещества, нацеленные на нормализацию метаболизма и обеспечение адекватной энергетики митохондрий.

При синдроме MELAS лечение должно быть направлено на лечение судорог, эндокринных расстройств, устранение последствий инсульта.

P. Каufmann и соавт. (2006) указывают, что поскольку уровень лактата часто коррелирует с тяжестью неврологических проявлений, целесообразно применять дихлорацетат для снижения уровня лактата . В нашей стране с аналогичной целью используется диметилоксобутилфосфонилдиметилат (Димефосфон) .

В исследованиях японских авторов Y. Koga и соавт. (2002, 2005, 2006, 2007) с хорошим эффектом использовалось внутривенное введение L-аргинина (предшественника NO) — для стимуляции вазодилатации в остром периоде инсульта, а также пероральное его применение для снижения тяжести последующих эпизодов .

Среди средств, используемых в терапии митохондриальной патологии, фигурируют следующие: витамин В 1 (тиамин) — 400 мг/сут, витамин В 2 (рибофлавин) — 100 мг/сут, витамин С (аскорбиновая кислота) — до 1 г/сут, витамин Е (токоферол) — 400 МЕ/сут, никотинамид (ниацин) — до 500 мг/сут, коэнзим Q 10 — от 90 до 200 мг/сут, L-карнитин — от 10 мг до 1-2 г/сут, янтарная кислота — от 25 мг до 1,5 г/cут, Димефосфон 15% — 1,0 мл на 5 кг массы тела. Применяются также цитохром С (внутривенно), Реамберин (внутривенно) и Цитофлавин (внутривенно и перорально) .

В качестве других средств фармакотерапии выступают кортикостероиды, минералокортикоиды (при развитии надпочечниковой недостаточности), антиконвульсанты — при судорогах/эпилепсии (исключая вальпроевую кислоту и ее производные, ограничивая применение барбитуратов). В наших наблюдениях наиболее эффективной противосудорожной терапией являлось использование препаратов леветирацетам (Кеппра), топирамат (Топамакс) или их сочетаний.

Нейродиетология при митохондриальной патологии

Основным принципом диеты при митохондриальной патологии является ограничение нутриентов, оказывающих негативное влияние на механизмы обмена — до формирования метаболического блока (рацион питания одновременно обогащается другими компонентами на обычном или повышенном уровне). Такая терапевтическая стратегия получила название «обхождения блока» (going around the block). Важным исключением в этом плане является группа митохондриальных нарушений, ассоциированных с метаболизмом пирувата (недостаточность пируватдегидрогеназного комплекса с сопутствующими нарушениями со стороны углеводов/гликогена/аминокислот). При этом рекомендуются кетогенная диета и другие виды высокожировых диет .

Широко применяются вещества, являющиеся пищевыми кофакторами (коэнзим Q 10 , L-карнитин, ацетил-L-карнитин, витамин В 2 , аскорбиновая кислота, витамин Е, витамин В 1 , никотинамид, витамин В 6 , витамин В 12 , биотин, фолиевая кислота, витамин К, α-липоевая кислота, янтарная кислота, Se) . Рекомендуется избегание индивидуальных алиментарных факторов, индуцирующих обострение митохондриальной болезни (голодание, потребление жиров, белков, сахарозы, крахмала, алкоголя, кофеина, мононатрия глутамата; количественные нарушения приема пищи и неадекватное потребление пищевой энергии). При необходимости осуществляется клиническое питание (энтеральное, парентеральное, гастростомия) .

Чрезвычайно важными являются своевременная диагностика митохондриальных болезней, поиск клинических и параклинических критериев этих заболеваний на этапе предварительном, догенетическом. Это необходимо для подбора адекватной метаболической терапии и предотвращения ухудшения состояния или инвалидизации больных с этими редкими заболеваниями.

C. S. Chi (2015) подчеркивает, что подтверждение или исключение митохондриальной патологии остается принципиальным в педиатрической практике, особенно когда клинические признаки болезни не являются специфичными, вследствие чего необходим катамнестический подход к оценке симптомов и биохимических показателей .

Литература

  1. Martikainen M. H., Chinnery P. F. Mitochondrial disease: mimics and chameleons // Pract. Neurol. 2015. Vol. 15 (6): 424-435.
  2. Sarnat H. B., Menkes J. H. Mitochondrial encephalomyopathies. Ch. 2. In: Child Neuroloy (Menkes J. H., Sarnat H. B., Maria B. L., eds). 7 th ed. Philadelphia-Baltimore. Lippincott Williams & Wilkins. 2006. 143-161.
  3. Luft R., Ikkos D., Palmieri G., Ernster L., Afzelius B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study // J. Clin. Invest. 1962. Vol. 41: 1776-1804.
  4. Nass M. M., Nass S. Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions // J. Cell. Biol. 1963. Vol. 19: 593-611.
  5. Nass S., Nass M. M. Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments // J. Cell. Biol. 1963. Vol. 19: 613-629.
  6. Сухоруков В. С. Очерки митохондриальной патологии. М.: Медпрактика-М, 2011. 288 с.
  7. Chinnery P. F., DiMauro S., Shanske S., Schon E. A., Zeviani M., Mariotti C., Carrara F., Lombes A., Laforet P., Ogier H., Jaksch M., Lochmuller H., Horvath R., Deschauer M., Thorburn D. R., Bindoff L. A., Poulton J., Taylor R. W., Matthews J. N., Turnbull D. M. Risk of developing a mitochondrial DNA deletion disorder // Lancet. 2004. 364 (9434): 592-596.
  8. DiMauro S. Mitochondrial diseases // Biochim. Biophys. Acta. 2004. 1658 (1-2): 80-88.
  9. Siciliano G., Volpi L., Piazza S., Ricci G., Mancuso M., Murri L. Functional diagnostics in mitochondrial diseases // Biosci. Rep. 2007. Vol. 27 (1-3): 53-67.
  10. Miles M. V., Miles L., Tang P. H., Horn P. S., Steele P. E., DeGrauw A. J., Wong B. L., Bove K. E. Systematic evaluation of muscle coenzyme Q10 content in children with mitochondrial respiratory chain enzyme deficiencies // Mitochondrion. 2008. Vol. 8 (2): 170-180.
  11. Kaufmann P., Engelstad K., Wei Y., Jhung S., Sano M. C., Shungu D. C., Millar W. S., Hong X., Gooch C. L., Mao X., Pascual J. M., Hirano M., Stacpoole P. W., DiMauro S., De Vivo D. C. Dichloracetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial // Neurology. 2006. Vol. 66 (3): 324-330.
  12. Федеральное руководство по использованию лекарственных средств (формулярная система). Вып. XVI. М.: Эхо, 2015. 540.
  13. Koga Y., Ishibashi M., Ueki I., Yatsuga S., Fukiyama R., Akita Y., Matsuishi T. Effects of L-arginine on the acute phase of strokes in three patients with MELAS // Neurology. 2002. Vol. 58 (5): 827-828.
  14. Koga Y., Akita Y., Nishioka J., Yatsuga S., Povalko N., Tanabe Y., Fujimoto S., Matsuishi T. L-arginine improves the symptoms of strokelike episodes in MELAS // Neurology. 2005. Vol. 64 (4): 710-712.
  15. Koga Y., Akita Y., Junko N., Yatsuga S., Povalko N., Fukiyama R., Ishii M., Matsuishi T. Endothelial dysfunction in MELAS improved by L-arginine supplementation // Neurology. 2006. Vol. 66 (11): 1766-1769.
  16. Koga Y., Akita Y., Nishioka J., Yatsuga S., Povalko N., Katayama K., Matsuishi T. MELAS and L-arginine therapy // Mitochondrion. 2007. Vol. 7 (1-2): 133-139.
  17. Rai P. K., Russell O. M., Lightowlers R. N., Turnbull D. M. Potential compounds for the treatment of mitochondrial disease // Br. Med. Bull. 2015. Nov 20. pii: ldv046. .
  18. Finsterer J., Bindu P. S. Therapeutic strategies for mitochondrial disorders // Pediatr. Neurol. 2015. Vol. 52 (3): 302-313.
  19. Студеникин В. М., Горюнова А. В., Грибакин С. Г., Журкова Н. В., Звонкова Н. Г., Ладодо К. С., Пак Л. А., Рославцева Е. А., Степакина Е. И., Студеникина Н. И., Турсунхужаева С. Ш., Шелковский В. И. Митохондриальные энцефалопатии. Глава 37. В кн.: Нейродиетология детского возраста (коллективная монография)/Под ред. Студеникина В. М. М.: Династия, 2012. С. 415-424.
  20. Chi C. S. Diagnostic approach in infants and children with mitochondrial diseases // Pediatr. Neonatol. 2015. Vol. 56 (1): 7-18.

В. М. Студеникин* , 1 , доктор медицинских наук, профессор, академик РАЕ
О. В. Глоба**, кандидат медицинских наук

* ГОУ ВПО РНИМУ им. Н. И. Пирогова МЗ РФ, Москва
** ГОУ ВПО ПМГМУ им. И. М. Сеченова МЗ РФ, Москва

Митохондриальные заболевания (МЗ) — группа наследственных заболеваний, связанных с дефектами в функционировании митохондрий, приводящими к нарушениям энергетических функций в клетках.

Историческая справка:

Понятие «митохондриальные болезни» сформировалось в медицине в конце ХХ века. В первую очередь были изучены болезни, связанные с мутациями митохондриальной ДНК, открытой в начале 60-ых годов. Полная первичная структура митохондриальной ДНК человека была опубликована в 1981 го¬ду и уже в конце 80-ых годов была доказана ведущая роль ее мутаций в развитии ряда наследственных заболеваний. К последним относятся: наследственная атрофия зрительных нервов Лебера, синдром NARP (нейропатия, атаксия, пигментный ретинит), синдром MERRF (миоклонусэпилепсия с "рваными" красными волокнами в скелетных мышцах), синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз, инсультоподобные эпизоды), синдром Кернса-Сейра (пигментный ретинит, наружная офтальмоплегия, блокада сердца, птоз, мозжечковый синдром), синдром Пирсона (поражение костного мозга, панкреатическая и печеночная дисфункции) и многие другие.

В меньшей степени изучены наследственные митохондриальные дефекты, связанные с повреждением ядерного генома.

Патогенез.

Митохондрии отвечают за выработку большей части энергии, необходимой для функционирования клеток. Фактически они являются настолько важным источником энергии, что в каждой клетке их сотни. При МЗ могут «выключиться» как часть митохондрий, так и все они, что приводит к прекращению выработки необходимой энергии

Поскольку наиболее энергоемкими являются нервные и мышечные клетки, при МЗ наиболее распространены мышечные и неврологические проблемы, такие, как мышечная слабость, непереносимость физических нагрузок, потеря слуха, нарушения баланса и координации, эпиприступы.

Митохондриальные зааболевания, вызывающие выраженные мышечные проблемы, именуют митохондриальными миопатиями (myo - означает «мышца», а pathos - «болезнь»), а те, которые вызывают как мышечные, так и неврологические проблемы - митохондриальными энцефаломиопатиями (encephalo - «мозг»)

Когда клетка заполнена дефектными митохондриями, она не только лишена АТФ, но в ней могут накапливаться неиспользуемые молекулы топлива и кислород, что приводит к катастрофическим последствиям. В этом случае избыточные молекулы топлива используются для синтеза АТФ неэффективно, в результате чего могут образовываться потенциально опасные продукты, такие, как молочная кислота (Это также происходит, когда клетки испытывают недостаток кислорода, например - мышечные клетки при усиленных физических нагрузках). Накопление молочной кислоты в крови - лактатацидоз - ассоциировано с мышечной усталостью, и может вызывать повреждение нервной и мышечной тканей.

При этом неиспользуемый в клетке кислород может трансформироваться в разрушительные соединения, именуемые реактивными формами кислорода, включая т. н. свободные радикалы (Они являются мишенью для т. н. антиоксидантных препаратов и витаминов).

Синтезированная в митохондриях АТФ - основной источник энергии для сокращения мышечных и возбуждения нервных клеток (т. к. клетки этих тканей наиболее метаболически активны, энергетически зависимы). Таким образом, нервные и мышечные клетки особенно чувствительны к дефектам митохондрий. Комбинированный эффект от потери энергии и накопления токсинов в этих клетках, надо полагать, и вызывает развитие симптомов митохондриальных миопатий и энцефаломиопатий

Клиника

В случаях, когда человек с мутацией в митохондриальном гене несет смесь нормальной и мутантной ДНК - мутации поначалу могут вообще не иметь внешних проявлений. Нормальные митохондрии до поры до времени обеспечивают клетки энергией, компенсируя недостаточность функции митохондрий с дефектами. На практике это проявляется более или менее длительным бессимптомным периодом при многих митохондриальных заболеваниях. Однако рано или поздно наступает момент, когда дефектные формы накапливаются в количестве, достаточном для проявления патологических признаков. Возраст манифестации заболевания варьирует у разных больных. Раннее начало заболевания приводит к более тяжелому течению и неутешительному прогнозу.

Характерные признаки митохондриальных цитопатий:

Скелетные мышцы: низкая толерантность к физической нагрузке, гипотония, проксимальная миопатия, включающая фациальные и фарингеальные мышцы, офтальмопарез, птоз

Сердце: нарушения сердечного ритма, гипертрофическая миокардиопатия

Центральная нервная система: атрофия зрительного нерва, пигментная ретинопатия, миоклонус, деменция, инсультоподобные эпизоды, расстройства психики

Периферическая нервная система: аксональная нейропатия, нарушения двигательной функции гастроинтестинального тракта

Эндокринная система: диабет, гипопаратиреоидизм, нарушение экзокринной функции панкреас, низкий рост

Таким образом, типичны для митохондриальных заболеваний вовлеченность разных органов и одновременное проявление внешне не связанных между собой аномалий. Примерами служат:

1. Мигрени с мышечной слабостью

2. Наружная офтальмоплегия с нарушением проводимости сердечной мышцы и мозжечковой атаксией

3. Тошнота, рвота с оптической атрофией и кардиомиопатией

4. Низкорослость с миопатией и инсультоподобным и эпизодами

5. Экзокринная дисфункция поджелудочной железы с сидеробластной анемией

6. Энцефало- миопатия с диабетом

7. Диабет с глухотой

8. Глухота с наружной офтальмоплегией, птозом и ретинопатией

9. Задержка развития или потеря навыков и офтальмоплегия, офтальмопарез

Характер и тяжесть клинических проявлений митохондриальных болезней определяется:

Тяжестью мутации мтДНК;

Процентным содержанием мутантной мтДНК в конкретных органах и тканях;

Энергетической потребностью и функциональным резервом органов и тканей, содержащих мтДНК (их “порогом чувствительности” к дефектам окислительного фосфори лирования).

Миопатия

Основные симптомы митохондриальной миопатии - истощение мышц и их слабость, и непереносимость физических нагрузок.

У некоторых индивидов слабость наиболее выражена в мышцах, контролирующих движения глаз и век. Два наиболее частых следствия такой слабости - это постепенный паралич движения глаз (прогрессирующая наружная офтальмоплегия, ПНО), и опущение верхних век (птоз). Зачастую люди автоматически компенсируют ПНО движениями головы для того, чтобы смотреть в различных направлениях, и могут даже не подозревать о каких либо проблемах. Птоз потенциально более неприятен, поскольку может ухудшить зрение, а также придает лицу апатичное выражение, но он может быть скорректирован хирургическим путем, либо использованием специальных очков с устройством для подъема века

Митохондриальные миопатии могут также вызывать слабость других мышц лица и шеи, что приводит к заплетающейся речи и трудностям с глотанием. В этих случаях могут помочь речевая терапия (занятия с логопедом) или включение в рацион питания таких продуктов, которые легче проглатываются.

Непереносимость физических нагрузок, также именуемая усталостью напряжения - это необычное чувство утомления в ответ на физическую активность. Степень этой непереносимости существенно варьируется у разных людей. Некоторые могут испытывать проблемы только при занятиях физкультурой, таких например, как оздоровительный бег, в то время как у других возникают сложности с выполнением повседневных дел, например с выходом к почтовому ящику или поднятием пакета молока.

Энцефаломиопатия

Митохондриальная энцефаломиопатия, как правило, включает некоторые из вышеупомянутых симптомов миопатии, дополненными одним или несколькими неврологическими симптомами. Также как и при миопатии, наблюдается значительная вариабельность симптомов обоего типа и тяжести течения у разных индивидов.

Среди наиболее частых симптомов митохондриальной энцефаломиопатии - нарушения слуха, мигренеподобные головные боли и эпиприступы. По крайней мере, в одном синдроме головные боли и эпиприступы часто сопровождается инсультоподобными эпизодами

Дополнительно к поражению глазных мышц, митохондриальная энцефаломиопатия может поражать как сами глаза, так и участки головного мозга, ответственные за зрение. Например, потеря зрения вследствие оптической атрофии (дегенерации зрительного нерва) или ретинопатии (дегенерации некоторых клеток, выстилающих глазное дно) - обычные симптомы митохондриальной энцефаломиопатии. По сравнению с мышечными проблемами, эти эффекты с большей вероятностью приводят к серьезным нарушениям зрения

Довольно часто митохондриальная энцефаломиопатия вызывает атаксию, или сложности с балансом и координацией.

Диагностика.

Ни один из отличительных симптомов митохондриального заболевания - мышечная слабость, непереносимость нагрузок, ухудшение слуха, атаксия, эпиприступы, неспособность к обучению, катаракта, диабет и низкорослость - не является уникальным именно для такого заболевания. Однако комбинация трех или более из этих симптомов у одного индивида свидетельствует в пользу митохондриального заболевания, особенно если симптомы затрагивают более одной системы организма

Физикальное обследование обычно включает в себя тесты на силу и выносливость, такие например, как повторяющиеся сжатия-разжатия кулака, или подъем и спуск по небольшой лестнице. Неврологическое обследование может включать в себя проверку рефлексов, зрения, речи и базовых когнитивных способностей.

Существует ряд рутинных клинических методов исследования, которые можно использовать при подозрении на митохондриальную цитопатию:

Лактатный ацидоз является практически постоянным спутником митохондриальных болезней (только этот признак является недостаточным для постановки диагноза, так как он может выявляться и при других патологических состояниях; в этом отношении может быть полезным измерение уровня лактата в венозной крови после умеренной физической нагрузки, например на велоэргометре)

ЭМГ-исследование - само по себе данное исследование также не могут быть маркером митохондриальной цитопатии; вместе с тем нормальная или близкая к нормальной ЭМГ у пациентов с выраженной мышечной слабостью может быть подозрительной в отношении митохондриальной патологии.

ЭЭГ - данные ЭЭГ не является достаточно специфическими

Биопсия скелетных мышц - является наиболее информативным методом при постановке диагноза митохондриальной цитопатии - помимо обнаружения RRF при трехцветной окраске по Гомори, полезными являются другие гистохимические и иммунологические исследования: окраска на цитохромс-оксидазу и сукцинатдегидрогеназу, иммунногистохимические исследования с применением антител к отдельным субъединицам дыхательного комплекса; мышечная ткань удобна для биохимического исследования респираторной цепочки, а также как материал для генетического исследования.

Образцы мышечных биоптатов целесообразно делить на три части - одна для микроскопического исследования (гистология, гистохимия и электронная микроскопия), вторая для энзимологического и иммунологического анализа (изучение характеристик компонентов дыхательной цепи) и третья - непосредственно для молекулярно-генетического анализа. Поиск известных мутаций на мышечном материале позволяет в большинстве случаев успешно осуществлять ДНК-диагностику болезни. При отсутствии из вестных мутаций мтДНК в мышечной ткани следующим этапом является развернутый молекулярно-генетический анализ - секвенирование всей цепи мтДНК (или кандидатных генов ядерной ДНК) с целью выявления нового варианта мутации.

Электронно-микроскопическое исследование скелетных мышц - дает прекрасные результаты, поэтому данный метод надо использовать, если имеется такая возможность

Лечение.

Что касается терапии митохондриальных цитопатий, то речь может идти пока только о симптоматической.

Лечение митохондриальных болезней проводится обычно по двум основным направлениям:

Повышение эффективности энергетического обмена в тканях (тиамин, рибофлавин, никотинамид, коэнзим Q10 (кудесан), L-карнитин (элькар), препараты кальция и магния. , витамин С, цитохром С)

Предупреждение повреждения митохондриальных мембран свободными радикалами с помощью антиоксидантов (витамин Е, a-липоевая кислота) и мембранопротекторов.

В практику входят всё новые препараты комбинированного действия, такие, например, как идебенон (Нобен) - улучшенный структурный аналог коэнзима Q10, благоприятно влияющий на активность дыхательного пути и обладающий выраженным антиоксидантным, антиапоптотическим и нейротрофическим действием.

Очевидно, что расширение терапевтического арсенала при митохондриальных болезнях диктует настоятельную необходимость того, чтобы практические врачи различных специальностей (неврологи, психиатры, педиатры, генетики, гематологи и др.) были хорошо знакомы с алгоритмом диагностики этих заболеваний.

Ключевые слова

НОВОРОЖДЕННЫЕ ДЕТИ / МИТОХОНДРИАЛЬНОЕ ЗАБОЛЕВАНИЕ / СИНДРОМ ИСТОЩЕНИЯ МТДНК 13-ГО ТИПА / ЭНЦЕФАЛОМИОПАТИЯ / ЛАКТАТ-АЦИДОЗ / НЕОНАТАЛЬНАЯ МАНИФЕСТАЦИЯ / ГЕН FBXL4 / NEWBORNS / MITOCHONDRIAL DISORDER / 13 TYPE MTDNA DEPLETION SYNDROME / ENCEPHALOMYOPATHY / LACTIC ACIDOSIS / NEONATAL MANIFESTATION / FBXL4 GENE

Аннотация научной статьи по клинической медицине, автор научной работы - Дегтярева А.В., Степанова Е.В., Иткис Ю.С., Дорофеева Е.И., Нароган М.В.

Представлено клиническое наблюдение ребенка с ранней неонатальной манифестацией редкого наследственного заболевания синдрома истощения митохондриальной ДНК (мтДНК) 13-го типа, подтвержденного лабораторно в России. Мутации в гене FBXL4 являются причиной нарушения репликации мтДНК и снижения активности комплексов дыхательной цепи митохондрий, следствием чего служит нарушение функционального состояния различных органов и систем, в первую очередь мышечной системы и головного мозга. Антенатально у ребенка был диагностирован гидронефроз справа, субэпендимальные кисты головного мозга, частичная кишечная непроходимость на фоне многоводия. Состояние резко ухудшилось к концу первых суток жизни. Отмечался клинический симптомокомплекс сепсиса, выраженный синдром угнетения, мышечной гипотонии, декомпенсированный метаболический лактат-ацидоз , повышение концентрации митохондриальных маркеров в плазме крови и моче, а также изменения в области базальных ганглиев головного мозга. Дифференциальный диагноз проводился с наследственными заболеваниями, протекающими по типу «сепсисподобного» симптомокомплекса с лактат-ацидозом : группа нарушений обмена аминокислот, органических кислот, дефектов ß-окисления жирных кислот, болезни дыхательной цепи митохондрий, гликогеновая болезнь. Синдром истощения мтДНК 13-го типа имеет неблагоприятный прогноз, однако точная диагностика имеет исключительно важное значение для медико-генетического консультирования и позволяет предотвратить повторное рождение больного ребенка в семье.

Похожие темы научных работ по клинической медицине, автор научной работы - Дегтярева А.В., Степанова Е.В., Иткис Ю.С., Дорофеева Е.И., Нароган М.В.

  • Недостаточность митохондриальной деоксигуанозинкиназы

    2009 / Дегтярева Анна Владимировна, Захарова Екатерина Юрьевна, Цыганкова Полина Георгиевна, Чеглецова Елена Владимировна, Готье Сергей Владимирович, Цирульникова Ольга Мартеновна
  • Подострый некротизирующий энцефаломиелит. Клинические наблюдения

    2016 / Онегин Е.В., Бердовская А.Н., Домаренко Т.Н., Данилова Г.С., Мотюк И.Н.
  • Подострая некротизирующая энцефаломиопатия

    2009 / Михайлова Светлана Витальевна, Захарова Екатерина Юрьевна, Харламов Дмитрий Алексеевич, Ильина Елена Степановна, Сухоруков Владимир Сергеевич, Балина Елена Альбертовна, Лузин Анатолий Владимирович, Цыганкова Полина Георгиевна
  • Клинический полиморфизм митохондриальных энцефаломиопатий, обусловленных мутациями гена полимеразы гамма

    2012 / Михайлова Светлана Витальевна, Захарова Екатерина Юрьевна, Цыганкова Полина Георгиевна, Абрукова Анна Викторовна, Политова Екатерина Алексеевна, Балабанова Вера Антонидовна, Печатникова Н.Л., Саввин Дмитрий Анатольевич, Холин Алексей Александрович, Пилия Сергей Варденович
  • Эпилепсия при синдроме melas

    2009 / Мухин К.Ю., Миронов М.Б., Никифорова Н.В., Михайлова С.В., Чадаев В.А., Алиханов А.А., Рыжков Б.Н., Петрухин А.С.
  • Диагностическая ценность исследования цитохимической активности ферментов при наследственных митохондриальных болезнях

    2017 / Казанцева И.А., Котов С.В., Бородатая Е.В., Сидорова О.П., Котов А.С.
  • Дефицит ацил-коэнзим а дегидрогеназы жирных кислот с очень длинной углеродной цепью

    2014 / Дегтярева Анна Владимировна, Никитина Ирина Владимировна, Орловская Ирина Владимировна, Захарова Екатерина Юрьевна, Байдакова Галина Викторовна, Ионов Олег Вадимович, Амирханова Дженнета Юнусовна, Левадная Анна Викторовна
  • Митохондриальные заболевания в детской неврологической практике (клиническое наблюдение)

    2014 / Прыгунова Татьяна Михайловна, Радаева Татьяна Михайловна, Степанова Елена Юрьевна
  • Инсульты при митохондриальных заболеваниях

    2012 / Пизова Н. В.
  • Редкие варианты митохондриальной ДНК у ребенка с энцефаломиопатией

    2016 / Воронкова Анастасия Сергеевна, Литвинова Наталия Александровна, Николаева Екатерина Александровна, Сухоруков Владимир Сергеевич

The article reports clinical case of early neonatal manifestation of a rare genetic disease mitochondrial DNA depletion syndrome, confirmed in laboratory in Russia. Mutations of FBXL4, which encodes an orphan mitochondrial F-box protein, involved in the maintenance of mitochondrial DNA (mtDNA), ultimately leading to disruption of mtDNA replication and decreased activity of mitochondrial respiratory chain complexes. It’s a reason of abnormalities in clinically affected tissues, most of all the muscular system and the brain. In our case hydronephrosis on the right, subependimal cysts of the brain, partial intestinal obstruction accompanied by polyhydramnios were diagnosed antenatal. Baby’s condition at birth was satisfactory and worsened dramatically towards the end of the first day of life. Clinical presentation includes sepsis-like symptom complex, neonatal depression, muscular hypotonia, persistent decompensated lactic acidosis , increase in the concentration of mitochondrial markers in blood plasma and urine, and changes in the basal ganglia of the brain. Imaging of the brain by magnetic resonance imaging (MRI) demonstrated global volume loss particularly the subcortical and periventricular white matter with significant abnormal signal in bilateral basal ganglia and brainstem with associated delayed myelination. Differential diagnosis was carried out with hereditary diseases that occur as a «sepsis-like» symptom complex, accompanied by lactic acidosis : a group of metabolic disorders of amino acids, organic acids, ß-oxidation defects of fatty acids, respiratory mitochondrial chain disorders and glycogen storage disease. The diagnosis was confirmed after sequencing analysis of 62 mytochondrial genes by NGS (Next Generation Sequencing). Reported disease has an unfavorable prognosis, however, accurate diagnosis is very important for genetic counseling and helps prevent the re-birth of a sick child in the family.

Текст научной работы на тему «Клиническое наблюдение пациента с синдромом истощения митохондриальной ДНК»

Клиническое наблюдение пациента с синдромом истощения митохондриальной ДНК

А.В. Дегтярева1,3, Е.В. Степанова1, Ю.С. Иткис2, Е.И. Дорофеева1, М.В. Нароган1,3, Л.В. Ушакова1, А.А. Пучкова1, В.Г. Быченко1, П.Г. Цыганкова2, Т.Д. Крылова2, И.О. Бычков2

1ФГБУ «Научный центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава РФ, Москва;

2ФГБНУ «Медико-генетический научный центр», Москва;

3ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава РФ, Москва, Россия

Clinical case of Mitochondrial DNA Depletion

A.V. Degtyareva1,3, E.V. Stepanova1, Yu.S. Itkis2, E.I. Dorofeeva1, M.V. Narogan1,3,

L.V. Ushakova1, A.A. Puchkova1, V.G. Bychenko1, P.G. Tsygankova2, T.D. Krylova2, I.O. Bychkov2

1«Research Center for Obstetrics, Gynecology and Perinatology» Ministry of Healthcare of the Russian Federation 2FSBI «Research Center for Medical Genetics»

3First Moscow state medical University I.M. Sechenov of Ministry of Healthcare

Представлено клиническое наблюдение ребенка с ранней неонатальной манифестацией редкого наследственного заболевания - синдрома истощения митохондриальной ДНК (мтДНК) 13-го типа, подтвержденного лабораторно в России. Мутации в гене FBXL4 являются причиной нарушения репликации мтДНК и снижения активности комплексов дыхательной цепи митохондрий, следствием чего служит нарушение функционального состояния различных органов и систем, в первую очередь мышечной системы и головного мозга. Антенатально у ребенка был диагностирован гидронефроз справа, субэпендимальные кисты головного мозга, частичная кишечная непроходимость на фоне многоводия. Состояние резко ухудшилось к концу первых суток жизни. Отмечался клинический симптомокомплекс сепсиса, выраженный синдром угнетения, мышечной гипотонии, декомпенсированный метаболический лактат-ацидоз, повышение концентрации митохондриальных маркеров в плазме крови и моче, а также изменения в области базальных ганглиев головного мозга. Дифференциальный диагноз проводился с наследственными заболеваниями, протекающими по типу «сепсисподобного» симптомокомплекса с лактат-ацидозом: группа нарушений обмена аминокислот, органических кислот, дефектов р-окисления жирных кислот, болезни дыхательной цепи митохондрий, гликогеновая болезнь. Синдром истощения мтДНК 13-го типа имеет неблагоприятный прогноз, однако точная диагностика имеет исключительно важное значение для медико-генетического консультирования и позволяет предотвратить повторное рождение больного ребенка в семье.

Ключевые слова: новорожденные дети, митохондриальное заболевание, синдром истощения мтДНК 13-го типа, энцефало-миопатия, лактат-ацидоз, неонатальнаяманифестация, генFBXL4.

Для цитирования: Дегтярева А.В., Степанова Е.В., Иткис Ю.С., Дорофеева Е.И., Нароган М.В., Ушакова Л.В., Пучкова А.А., Быченко В.Г., Цыганкова П.Г., Крылова Т.Д., Бычков И.О. Клиническое наблюдение пациента с синдромом истощения митохондриальной ДНК. Рос вестн перинатол и педиатр 2017; 62:(5): 55-62. DOI: 10.21508/1027-4065-2017-62-5-55-62

Abstract: The article reports clinical case of early neonatal manifestation of a rare genetic disease - mitochondrial DNA depletion syndrome, confirmed in laboratory in Russia. Mutations of FBXL4, which encodes an orphan mitochondrial F-box protein, involved in the maintenance of mitochondrial DNA (mtDNA), ultimately leading to disruption of mtDNA replication and decreased activity of mitochondrial respiratory chain complexes. It"s a reason of abnormalities in clinically affected tissues, most of all the muscular system and the brain. In our case hydronephrosis on the right, subependimal cysts of the brain, partial intestinal obstruction accompanied by polyhydramnios were diagnosed antenatal. Baby"s condition at birth was satisfactory and worsened dramatically towards the end of the first day of life. Clinical presentation includes sepsis-like symptom complex, neonatal depression, muscular hypotonia, persistent decompensated lactic acidosis, increase in the concentration of mitochondrial markers in blood plasma and urine, and changes in the basal ganglia of the brain. Imaging of the brain by magnetic resonance imaging (MRI) demonstrated global volume loss particularly the subcortical and periventricular white matter with significant abnormal signal in bilateral basal ganglia and brainstem with associated delayed myelination. Differential diagnosis was carried out with hereditary diseases that occur as a «sepsis-like» symptom complex, accompanied by lactic acidosis: a group of metabolic disorders of amino acids, organic acids, p-oxidation defects of fatty acids, respiratory mitochondrial chain disorders and glycogen storage disease. The diagnosis was confirmed after sequencing analysis of 62 mytochondrial genes by NGS (Next Generation Sequencing). Reported disease has an unfavorable prognosis, however, accurate diagnosis is very important for genetic counseling and helps prevent the re-birth of a sick child in the family.

Key words: newborns, mitochondrial disorder, 13 type mtDNA depletion syndrome, encephalomyopathy, lactic acidosis, neonatal manifestation, FBXL4 gene.

For citation: Degtyareva A.V., Stepanova E.V., Itkis Yu.S., Dorofeeva E.I., Narogan M.V., Ushakova L.V., Puchkova A.A., Bychenko V.G., Tsygankova P.G., Krylova T.D., Bychkov I.O. Clinical case of FBXL4-Related Encephalomyopathic Mitochondrial DNA Depletion. Ros Vestn Perinatal i Pediatr 2017; 62:(5): 55-62 (in Russ). DOI: 10.21508/1027-4065-2017-62-5-55-62

Митохондрии представляют собой сложные орга-неллы, которые играют ключевую роль в гоме-остазе клетки . Они являются основным источником синтеза внутриклеточной энергии в виде молекул АТФ, тесно вовлечены в процессы кальциевого и свободнорадикального обмена, а также участвуют в апоптозе. Ткани и органы, особенно зависимые от этих функций, первыми страдают при митохон-дриальных болезнях - больше всего это сказывается на мышечной ткани, нервной и эндокринной системах . Большинство митохондриальных заболеваний имеют прогрессирующий характер, приводят к инвалидности и преждевременной смерти. Эти болезни относят к редким, с частотой распространенности 1-1,5: 5000-10 000 новорожденных . Митохондриальные заболевания могут развиться в любом возрасте. Около 30% случаев манифестируют в неонатальном периоде .

Согласно генетической классификации, митохон-дриальные болезни разделяют на следующие группы: 1) заболевания, вызванные точковыми мутациями ми-тохондриальной ДНК (мтДНК) - синдромы MELAS, MERRF, LHON, NARP, имеющие материнское наследование; 2) заболевания, обусловленные единичными крупными перестройками мтДНК - синдромы Кирнса-Сейра, Пирсона; 3) болезни, связанные с мутациями в ядерных генах структурных белков

Адрес для корреспонденции: Дегтярева Анна Владимировна - д.м.н., зав. по клинической работе отдела неонатологии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова, проф. кафедры неонатологии Первого Московского государственного медицинского университета имени И.М. Сеченова, ORCID 0000-0003-0822-751X Степанова Екатерина Владимировна - ординатор Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова Дорофеева Елена Игоревна - к.м.н., зав. по клинической работе отделения хирургии новорожденных отдела неонатологии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова

Нароган Марина Викторовна - д.м.н., вед. научн. сотр. отделения патологии новорожденных и недоношенных детей отдела неонатологии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова, проф. кафедры неонатологии Первого Московского государственного медицинского университета имени И.М. Сеченова Ушакова Любовь Витальевна - к.м.н., врач-невролог научно-консультативного педиатрического отделения отдела неонатологии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова

Пучкова Анна Александровна - к.м.н., зав. по клинической работе научно-консультативного педиатрического отделения отдела неонатоло-гии и педиатрии Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова

Быченко Владимир Геннадьевич - к.м.н., зав. отделением лучевой диагностики Научного центра акушерства, гинекологии и перинатологии имени академика В.И. Кулакова 117997 Москва, ул. академика Опарина, д. 4

Иткис Юлия Сергеевна - научный сотрудник Медико-генетического научного центра

Крылова Татьяна Дмитриевна - врач-лабораторный генетик Медико-генетического научного центра

Бычков Игорь Олегович - аспирант Медико-генетического научного центра 115478 Москва, ул. Москворечье, д.1

дыхательной цепи митохондрий, - синдром Ли, младенческие энцефаломиопатии, наследующиеся ауто-сомно-рецессивно или Х-сцепленно; 4) болезни, связанные с мутациями в ядерных генах белков-переносчиков и сборщиков комплексов дыхательной цепи митохондрий, - синдром Ли, младенческие энцефа-ломиопатии, наследующиеся аутосомно-рецессивно или Х-сцепленно; 5) заболевания, связанные с мутациями в ядерных генах, ответственных за биогенез мтДНК, - синдромы истощения мтДНК с аутосом-но-рецессивным типом наследования.

Одним из биохимических маркеров митохондри-альных болезней является высокий уровень лактата в крови . В комплекс первой линии обследований при подозрении на эту патологию входит определение содержания аминокислот, ацилкарнитинов и органических кислот в крови и моче . Недавно была показана высокая информативность определения концентрации фактора роста фибробластов-21 (FGF-21) и ростового фактора дифференцировки-15 (GDF-15) в плазме крови , однако эффективность этих биомаркеров для диагностики отдельных групп митохондриальных болезней по-прежнему исследуется различными группами ученых . Окончательный диагноз митохондриального заболевания устанавливается на основании результата мо-лекулярно-генетического анализа.

В настоящее время не существует эффективных методов лечения митохондриальных болезней. Симптоматическая терапия основана на использовании метаболических препаратов, таких как коэнзим Q10, креатин моногидрат, рибофлавин, идебенон, кар-нитин, тиамин, дихлорацетат и др. Также следует уделять особое внимание питанию ребенка; рекомендован переход на низкобелковую диету с использованием в рационе большого количества жиров. Противопоказано использование препаратов валь-проевой кислоты и барбитуратов .

Синдромы истощения мтДНК представляют собой клинически и генетически гетерогенную группу заболеваний, наследуемых по аутосомно-рецессив-ному типу и вызванных мутациями в генах, поддерживающих биогенез и целостность мтДНК . При таких нарушениях происходит снижение числа копий мтДНК в пораженных тканях без ее структурного повреждения. Клинически выделяют три формы заболеваний, связанных со снижением ко-пийности мтДНК: энцефаломиопатическую, ми-опатическую и гепатоцеребральную. Известно 20 генов, мутации которых ведут к синдромам истощения мтДНК: ABAT, AGK, C10ORF2 (TWINKLE), DGUOK, DNA2, FBXL4, MFN2, MGME1, MPV17, OPA1, POLG, POLG2, RNASEH1, RRM2B, SLC25A4, SUCLA2, SUCLG1, TFAM, TK2, TYMP . В Российской Федерации в лаборатории наследственных болезней обмена веществ Медико-генетического научного центра были диагностированы у 36 пациентов

синдромы истощения мтДНК с мутациями в генах POLG и TWINKLE (энцефаломиопатическая и гепа-тоцеребральная формы), DGUOK и MPV17 (гепато-церебральная форма), что составило существенную долю от всех ранних форм митохондриальных заболеваний .

Синдром истощения мтДНК 13-го типа (MIMhttp://omim.org/entry/615471 615471) вызван мутациями в гене FBXL4, локализованном в локу-се 6q16.1-q16.27 . Впервые данное нарушение описано в 2013 г. P.E. Bonnen и X. Gai независимо друг от друга . В настоящее время в мире известно 26 клинических наблюдений . Ген FBXL4 кодирует белок (F-box and leucine-rich repeat 4 protein), являющийся одной из субъединиц убик-витинпротеинлигазного комплекса, который играет важную роль в процессе разрушения дефектных белков в клетке, в том числе в митохондриях . Точная функция данного белка неизвестна, но на культурах клеток было показано, что в поврежденных митохондриях снижается синтез АТФ и нарушается репликация мтДНК, что приводит в конечном счете к снижению ее копий в тканях и нарушению работы дыхательной цепи митохондрий .

В большинстве случаев синдром истощения мтДНК 13-го типа манифестирует в раннем неона-тальном периоде, однако описаны наблюдения более поздней манифестации в возрасте до 24 мес . Заболевание характеризуется энцефалопатией, гипотонией, лактат-ацидозом, грубой задержкой развития и изменениями в области базальных ганглиев при магнитно-резонансной томографии (МРТ) головного мозга. По данным M. Huemer и соавт. , у пациентов с мутациями в гене FBXL4 отмечаются такие фе-нотипические признаки, как узкое и длинное лицо, выступающий лоб, густые брови, узкие глазные щели, широкая переносица, седловидный нос.

Прогноз является крайне неблагоприятным, большинство детей умирают в первые 4 года жизни. Установление диагноза заболевания имеет большую значимость для медико-генетического консультирования и возможной пренатальной диагностики .

Цель данной публикации - клиническое описание первого российского случая митохондриально-го заболевания, обусловленного мутациями в гене FBXL4, и определение основных критериев для диагностики синдромов истощения мтДНК в раннем детском возрасте.

Пациент и методы исследования

Девочка родилась и находилась под динамическим наблюдением в Научном центре акушерства, гинекологии и перинатологии им. В.И. Кулакова. Проводилось комплексное клинико-лабораторное и инструментальное обследование. Некоторые биохимические и молекулярно-генетические исследования осуществлены в лаборатории наследственных

болезней обмена веществ Медико-генетического научного центра. Органические кислоты в моче анализировались методом газовой хроматографии с масс-спектрометрической детекцией в виде три-метилсилиловых эфиров. Пробоподготовка проводилась по методу, предложенному M. Lefevere . Анализ выполнялся на приборе 7890А/5975С (Agilent Technologies, США) с колонкой НР-5МS (30м*0,25мм*4мкм). Расчет полученных результатов осуществляли методом внутреннего стандарта. Концентрацию митохондриальных маркеров FGF-21 и GDF-15 в плазме крови измеряли с помощью наборов на основе метода иммуноферментного анализа фирмы Biovendor (Czech Republic).

ДНК выделяли из цельной крови наборами фирмы Isogene (Россия) по протоколу производителя. Секвенирование 62 ядерных митохондриальных генов проведено методом NGS (Next Generation Sequencing) на приборе Ion Torrent PGM™ System for Next-Generation Sequencing (Life Technologies, Thermo Fisher Scientific). Пробоподготовка образцов ДНК проводилась набором реагентов Ion AmpliSeq™ Library Kit 2.0 (дизайн пула праймеров по технологии Ampliseq) согласно протоколу производителя. Визуализация выравнивания секвенируемых фрагментов на референсную последовательность генома человека Human.hg19 проведена в программе IGV. Обнаруженные изменения аннотировались с помощью программы ANNOVAR. Предсказательная функциональная значимость не описанных ранее мутаций оценивалась по различным программам со свободным доступом (PolyPhen2, Mutation taster, SIFT). Выявленные варианты фильтровались по частоте встречаемости в популяциях по данным, представленным в открытых базах ExAc, 1000 genomes и др. Нуклеотидные замены, отличные от референсной последовательности, анализировались по базам данных по мутациям и полиморфизмам (HGMD, Ensemble, dbSNP). Верификацию выявленных в гене FBXL4 мутаций проводили методом прямого автоматического секвениро-вания на генетическом анализаторе ABI3500 (Thermo Fisher Scientific) с использованием BigDye Terminator v.1.1 (Thermo Fisher Scientific). Для полимеразной цепной реакции (ПЦР) использовали специфические олигонуклеотидные праймеры (последовательность доступна по запросу). Выравнивание и сравнение данных проведено в соответствии с транскриптом NM_012160.

Клиническое наблюдение

Ребенок родился в срок у соматически здоровой женщины с отягощенным акушерско-гинекологиче-ским и инфекционным анамнезом. Брак не родственный. В семье есть один здоровый ребенок. Беременность протекала с обострением сальпингоофорита в I триместре, пульпитом с повышением температуры до 38°С, завершилась самостоятельными родами.

Ребенок родился с массой тела 2555 г, длиной 49 см, оценкой по шкале Апгар 8/9 баллов. Антенатально был диагностирован гидронефроз справа, субэпенди-мальные кисты головного мозга и частичная кишечная непроходимость на фоне многоводия. Первые часы жизни имели характер «периода относительного благополучия», однако, учитывая антенатально выявленную патологию, ребенок был переведен в отделение хирургии, реанимации и интенсивной терапии новорожденных для обследования.

К концу первых суток жизни состояние резко ухудшилось, наблюдался выраженный синдром угнетения, мышечная гипотония, ухудшение гемодинамики, дыхательные нарушения, потребовавшие проведения искусственной вентиляции легких. По кислотно-основному состоянию и газовому составу крови отмечался декомпенсированный метаболический лактат-ацидоз (pH 7,12; pCO2 12,6 мм рт.ст; pO2 71,9 мм рт.ст., BE -24,2 ммоль/л; лактат 19,0 ммоль/л). Исходя из данных анамнеза нельзя было исключить наличие инфекционного процесса, и ребенку была назначена антибактериальная и иммуномоделирую-щая терапия. В клиническом анализе крови отмечался лейкоцитоз со сдвигом формулы влево, снижение содержания гемоглобина, уровень тромбоцитов был в пределах нормативных значений (табл. 1).

При этом маркеры системной воспалительной реакции (С-реактивный белок и прокальцитонин) были отрицательными (0,24 мг/л и 10 нг/мл соответственно) и в ходе обследования не были выявлены очаги инфекции. С целью исключения врожденной пневмонии было проведено рентгенологическое исследование, по результатам которого не было обнаружено специфических изменений. На основании результатов люмбальной пункции был исключен менингит. Клинический анализ мочи тоже не выявил

Таблица 1. Показатели клинического анализа крови пациентки Table 1. The parameters of the clinical blood test of the patient

воспалительных изменений. Кроме того, были получены отрицательные результаты микробиологических посевов крови и мочи, соскоба из зева и серологического исследования на TORCH-инфекции.

В неврологическом статусе отмечался синдром выраженного угнетения, менингеальной симптоматики не было, наблюдалось непостоянное расходящееся косоглазие, выраженная диффузная мышечная гипотония. В терапию был подключен метаболический препарат меглюминат натрия сукцинат (Реам-берин) и стимулятор синтеза ацетилхолина и фосфа-тидилхолина - холина альфоссцерат (Холитилин). На фоне проводимого посиндромного лечения отмечалась положительная динамика, к 8-м суткам жизни ребенок был снят с респираторной терапии. По результатам клинического анализа крови воспалительные изменения купировались, маркеры воспаления С-реактивный белок и прокальцитонин оставались в пределах нормы. Однако у ребенка сохранялись признаки выраженной мышечной гипотонии, синдрома угнетения ЦНС и лактат-ацидоз (9,5 ммоль/л). Важно отметить, что уровень лактата ни разу не снижался до нормальных значений и носил волнообразный характер в течение всего периода пребывания в стационаре (рис. 1).

Расхождение между клиническими признаками сепсиса с выраженным декомпенсированным лак-тат-ацидозом, отрицательными маркерами системной воспалительной реакции и ответом на лечение явилось поводом заподозрить метаболическое нарушение. В спектр дифференциальной диагностики были включены заболевания, протекающие в нео-натальном периоде по типу «сепсисподобного» сим-птомокомплекса с лактат-ацидозом: группа нарушений обмена аминокислот, органических кислот, дефектов р-окисления жирных кислот, болезни ды-

Показатели 2-е сутки жизни Референсные значения (1-7-е сутки жизни) 8-е сутки жизни Референсные значения (> 7 сут жизни)

Эритроциты, -1012/л 4,03 5,5-7,0 4,42 4,5-5,5

Гемоглобин, г/л 137 160-190 136 180-240

Гематокрит 40,9 0,41-0,56 38,1 0,41-0,56

Тромбоциты, -199/л 236 218-419 213 218-419

Лейкоциты, -109/л 49,11 5,0-30,0 11,72 8,5-14,0

Нейтрофилы, -109/л 27. 514 6- 20 4. 342 1,5 - 7,0

Нейтрофильный индекс 0,44 < 0,25 0,16 < 0,25

Палочкоядерные, % 16 5-12 6 1-5

Сегментоядерные, % 56 50-70 47 35-55

Эозинофилы, % 0 1-4 3 1-4

Моноциты, % 9 4-10 18 6-14

Лимфоциты, % 10 16-32 32 30-50

хательной цепи митохондрий и гли-когеновая болезнь I типа (болезнь Гирке) . Ребенку проводилась проба с кормлением, в основе лежит определение концентрации глюкозы и лактата в крови после голодной паузы и через 20-30 мин после кормления . По результатам данного исследования уровень глюкозы крови натощак был снижен, а уровень лактата повышен, после кормления отмечалось увеличение уровня глюкозы и выраженное нарастание лак-татемии (табл. 2).

В группу первой линии обследования были включены тесты, определяющие спектр аминокислот и ацилкарнитинов в крови и органических кислот в моче, а также плазменных митохон-дриальных биомаркеров FGF-21 и GDF-15. В крови было обнаружено повышенное содержание аланина, лейцина и орнитина (табл. 3). Спектр ацилкарнити-нов в крови был в пределах нормы, что позволило исключить заболевания из группы дефектов ß-окис-ления жирных кислот . При исследовании мочи обнаружено повышение уровня лактата, фумаровой кислоты, 3-гидроксибутирата, пирувата, сукцината и 4-гидроксифенилпирувата (см. табл. 3). Данные изменения могут свидетельствовать о митохондриаль-

Таблица 2. Результаты проведения пробы с кормлением Table 2. Results of a sample with feeding

Рис. 1. Динамика концентрации лактата крови (в ммоль/л). Fig. 1. Dynamics of blood lactate concentration.

ном нарушении и фумаровой ацидурии .

Проводилось молекулярно-генетическое исследование нуклеотидной последовательности гена FH, мутации которого обусловливают развитие фумаровой ацидурии . Отклонений от нормы не обнаружено.

Концентрация митохондриальных маркеров FGF-21 и GDF-15 в плазме крови была повышена и составила 720 пг/мл (норма 0-330 пг/мл) и 15715 пг/мл (норма 0-2000 пг/мл) соответственно.

В возрасте 8 сут жизни ребенку проводилась МРТ головного мозга, по результатам которой было обнаружено симметричное поражение подкорковых ядер в виде кистозных изменений, что является высоко-

Показатель До еды Через 20-30 мин после еды

BE, ммоль/л - 6,2 - 7,7

Глюкоза, ммоль/л 2,1 2,7

Лактат, ммоль/л 5,8 9.2

p CO2, мм рт.ст. 33,4 29,2

Таблица 3. Уровень аминокислот в крови и органических кислот в моче у пациентки Table 3. The level of patient"s amino acids in the blood and organic acids in the urine

Показатель Нижняя граница нормы Верхняя граница нормы Значение у пациентки

Аминокислоты в крови, нмоль/л

Аланин 85 750 1139,327

Лейцин 35 300 405,533

Орнитин 29 400 409,205

Органические кислоты в моче, моль на моль креатинина

Лактат 0,00 25,00 82,9

Фумаровая кислота 0,00 2,00 274,2

3-гидроксибутират 0,00 3,00 18,2

Пируват 0,00 12,00 13,7

Сукцинат 0,50 16,00 103,4

4-гидроксифенилпируват 0,00 2,00 39,5

патогномоничным признаком митохондри-альных болезней. Также были выявлены последствия кровоизлияния в боковые желудочки мозга (рис. 2).

Учитывая клинико-лабораторный сим -птомокомплекс, заподозрили митохондри-альное заболевание из группы младенческих энцефаломиопатий. Методом таргетного секвенирования ребенку был проведен анализ кодирующей последовательности 62 ядерных генов, мутации в которых приводят к развитию митохондриальной патологии. В гене FBXL4 были выявлены две компаунд-гетерозиготные мутации c.A1694G:p. D565G (в 8-м экзоне) и c.627_633del:p.V209fs (в 4-м экзоне). Мутация c.A1694G:p.D565G

Рис. 2. МРТ головного мозга ребенка в возрасте 8 сут жизни. A - Т2 взвешенное изображение в аксиальной плоскости. Белыми стрелками показаны кисты по контурам боковых желудочков, являющиеся характерным признаком митохондриальных заболеваний. Красными стрелками находится в высококонсервативной области показаны продукты биодеградации гемоглобина в просвете желудочковой LRR (Leucine-Rich Repeat) домена и была системы (последствия внутрижелудочкового кровоизлияния).

Б - томограмма выполнена в режиме Flair в аксиальной плоскости. Белыми стрелками показаны кисты в паравентрикулярных областях и в проекции подкорковых ядер, что характерно для митохондриальных заболеваний. Fig. 2. MRI of the child"s brain at the age of 8 days of life. A - Т2 weighted image in the axial plane. White arrows show cysts along the contours of the lateral ventricles, which are a characteristic feature of mitochondrial diseases. Red arrows show the products of biodegradation of hemoglobin in the lumen of the ventricular system (consequences of intraventricular hemorrhage). B - the tomogram is performed in the Flair in the axial plane. White arrows show cysts in paraventricular regions and in the projection of the subcortical nuclei, which is characteristic of mitochondrial diseases.

ранее описана в литературе . Вторая мутация обнаружена впервые у нашей пациентки, и ее патогенность не вызывает сомнений, поскольку она приводит к сдвигу рамки считывания и образованию преждевременного стоп-кодона.

В возрасте 42 дней ребенок был выписан домой в состоянии средней степени тяжести. В катамнезе сохранялись признаки угнетения ЦНС, выраженная мышечная гипотония, тенденция к птозу, деком-пенсированный метаболический лактат-ацидоз, задержка психомоторного развития, дисфагия, монотонная плоская весовая кривая, частые рецидивирующие респираторные инфекции, что в дальнейшем привело к развитию полиорганной недостаточности и летальному исходу в возрасте 11 мес жизни.

Обсуждение

В нашем наблюдении антенатально были диагностированы гидронефроз справа, субэпендималь-ные кисты головного мозга и частичная кишечная непроходимость на фоне многоводия. Данная картина при проведении пренатальной ультразвуковой диагностики описана при мутациях в гене FBXL4 . Приблизительно в 10% случаев многоводие возникает на фоне врожденных заболеваний , в том числе и наследственных заболеваний обмена веществ . В наблюдении M. Van Rij и соавт. у пациента также было диагностировано выраженное мно-говодие в 30 нед внутриутробного развития и было обнаружено органическое поражение структуры головного мозга в виде гипоплазии мозжечка, субэ-пендимальных кист и расширения большой цистерны головного мозга . О пренатальном выявлении субэпендимальных кист головного мозга сообщено и в наблюдении T. Baroy и соавт. . При митохон-дриальных заболеваниях также описаны случаи пре-натальной диагностики гидронефроза .

Состояние ребенка резко ухудшилось к концу 1-х суток жизни после периода «светлого промежутка», отмечался выраженный синдром угнетения, мышечная гипотония, дыхательные нарушения (потребовавшие проведения искусственной вентиляции легких), ухудшение гемодинамики, декомпенсиро-ванный метаболический лактат-ацидоз. Неонаталь-ная манифестация синдрома истощения мтДНК в более чем 80% случаев описана в виде выраженного синдрома угнетения, мышечной гипотонии, энцефалопатии, дисфагии с эпизодами срыгивания в сочетании с повышенным уровнем лактата и метаболическим ацидозом, возникающими после периода «светлого промежутка» . Патогенетически повышение уровня лактата связано с тем, что при функциональном нарушении дыхательной цепи изменяется окислительно-восстановительный баланс в цитоплазме, что приводит к нарушению функционирования цикла Кребса из-за избытка НАДН по отношению к НАД+. Этот процесс приводит к увеличению концентрации лактата, повышению молярного соотношения лактат/пируват и концентрации кетоновых тел в крови . Согласно данным литературы, уровень лактата у детей с синдромом истощения мтДНК 13-го типа составляет от 6,3 до 21 ммоль/л. Отмечается повышение уровня лак-тата в цереброспинальной жидкости . Нормальное молярное соотношение лактат/пируват состав-

ляет <20, тогда как, по данным M. Van Rij и соавт., у детей с мутациями в гене FBXL4 этот показатель составил 71 . У нашей пациентки уровень пирува-та не исследовался.

В нашем наблюдении гиперлактатемия являлась ведущей лабораторной характеристикой заболевания, однако этот признак не является высокоспецифичным. Причинами повышения концентрации лак-тата в крови также могут служить перинатальная асфиксия, врожденные пороки сердца, сепсис, заболевания печени и почек, дефекты р-окисления жирных кислот, органические ацидурии, нарушение метаболизма биотина, углеводного обмена и др., что представляет большие трудности для ранней диагностики патологии .

При обследовании пациента наблюдалось несоответствие между клиническими признаками инфекционного процесса с декомпенсированным лактат-ацидозом и отрицательными маркерами системной воспалительной реакции в сочетании с отсутствием очагов инфекции и бактериемии. На фоне посин-дромной терапии отмечалось некоторое улучшение состояния ребенка, но при этом сохранялись неврологические нарушения и выраженный лактат-ацидоз, что позволило заподозрить метаболическое заболевание. При исследовании спектра аминокислот была выявлена повышенная концентрация аланина, лейцина и орнитина, что часто обнаруживают при лактат-ацидозе. Уровень лактата в моче, а также метаболитов цикла Кребса (фумаровой кислоты, пирувата, сукци-ната) был значительно повышен, что также характерно для ряда митохондриальных заболеваний. Схожие изменения органических кислот в моче были описаны M.C. Van Rij и соавт. в клиническом наблюдении ре-

бенка с синдромом истощения мтДНК 13-го типа .

У нашей пациентки концентрация FGF-21 в плазме превышала верхнюю границу нормы в 2 раза, а концентрация GDF-15 - более чем в 7 раз. Эти данные соответствуют недавним публикациям о том, что GDF-15 является более чувствительным маркером митохондриальной патологии. При гепато-церебральных формах синдрома истощения мтДНК уровень обоих маркеров повышается в среднем в 15 раз выше границы нормы . В возрасте 8 сут жизни ребенку проводилась МРТ головного мозга, на которой были обнаружены высокоспецифичные признаки энцефаломиопатической формы митохон-дриального заболевания: симметричные поражения подкорковых ядер в виде кистозных изменений .

Таким образом, в настоящей работе представлено наблюдение пациентки с неонатальной манифестацией митохондриального заболевания - синдромом истощения мтДНК 13-го типа, обусловленным мутациями в гене FBXL4. Первые признаки заболевания были неспецифичными и имели характер сепсиспо-добного симптомокомплекса, появившегося после периода светлого промежутка в состоянии ребенка. Отмечался выраженный синдром угнетения, мышечной гипотонии, а также стойкий лактат-ацидоз, повышение уровня митохондриальных биомаркеров FGF-21 и GDF-15 в плазме крови и симметричные поражения в подкорковых структурах на МРТ головного мозга. В настоящее время не существует патогенетического лечения синдрома истощения мтДНК, но выявление генотипа пациента дает основание для проведения пренатальной диагностики, которая поможет предотвратить повторное рождение больного ребенка в семье.

ЛИТЕРАТУРА (REFERENCES)

1. Wallace DC. Mitochondrial diseases in man and mouse. Science 1999; 283: 1482-1488.

2. Pfeffer G., Majamaa K., Turnbull D.M., Thorburn D., Chin-nery P.F. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2012; 4: 1-42. DOI: 10.1002/14651858. CD004426.pub3

3. Maypek E. Inborn Errors of Metabolism - Early Detection, Key Symptoms and Therapeutic Options. Bremen. UNI-MED, 2008; 128.

4. Schaefer A.M., Taylor R.W., Turnbull D.M., Chin-nery P.F. The epidemiology of mitochondrial disorders-past, present and future. Biochim Biophys Acta 2004; 1659: 115-120.

5. Honzik T, Tesarova M., Magner M., Mayr J., Jesina Р. et al. Neonatal onset of mitochondrial disorders in 129 patients: clinical and laboratory characteristics and a new approach to diagnosis. J Inherit Metab Dis 2012; 35: 749-759. DOI 10.1007/s10545-011-9440-3

6. Gibson K., Halliday J.L., Kirby D.M., Yaplito-Lee J., Thorburn D.R., Boneh A. Mitochondrial oxidative phosphoryla-tion disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses. Pediatrics 2015; 122: 1003-1008. DOI: 10.1542/peds.2007-3502

7. Debray F.G., Lambert M., Mitchell G.A. Disorders of mito-

chondrial function. Curr Opin Pediatr 2008; 20: 471-482. DOI: 10.1097/M0P.0b013e328306ebb6

8. Van Rij M.C., Jansen F.A.R., Hellebrekers D.M.E.I., Onken-hout W, Smeets H.J.M., Hendrickx A.T. et al. Polyhydramnios and cerebellar atrophy: a prenatal presentation of mitochondrial encephalomyopathy caused by mutations in the FBXL4 gene. Clin Case Rep 2016; 4 (4): 425-428. DOI: 10.1002/ccr3.511

9. Koene S., Smeitink J. Mitochondrial medicine. A clinical guideline. First edition. Netherlands. Khondrion, Nijmegen, 2011; 135.

10. Крылова Т.Д., Прошлякова Т.Ю., Байдакова Г.В., Ит-кис Ю.С., Куркина М.В., Захарова Е.Ю. Биомаркеры в диагностике и мониторинге лечения болезней клеточных органелл. Медицинская генетика 2016; 15 (7): 3-10.

11. Liang C., Ahmad K, Sue C.M. The broadening spectrum of mitochondrial disease: Shifts in the diagnostic paradigm. Biochim Biophys Acta 2014; 1840 (4): 1360-1367. DOI: 10.1016/j.bbagen.2013.10.040

12. Davis R., Liang C., Edema-Hildebrand F., Riley C., Need-ham M. Fibroblast growth factor 21 is a sensitive bio-marker of mitochondrial disease. Neurology. Amer Acad Neurol 2013; 81: 1819-1826. DOI: 10.1212/01. wnl.0000436068.43384.ef

13. Pagliarini D.J., Calvo S.E., Chang B, Sheth S.A., Vafai S.B., Ong S.E. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008; 134 (1): 112-123. DOI: 10.1016/j.cell.2008.06.016

14. Даниленко Н.Г., Цыганкова П.Г., Сивицкая Л.Н., Левдан-ский О.Д., Давыденко О.Г. Синдромы митохондриальной деплеции в неврологической практике: клинические особенности и ДНК-диагностика. Неврология и нейрохирургия (Восточная Европа) 2013; 19 (3): 97-111.

15. El-Hattab A.W., Craigen W.J., Scaglia F. Mitochondrial DNA maintenance defects. Biochim Biophys Acta 2017; 1863 (6): 1539-1555. DOI: 10.1016/j.bbadis.2017.02.017

16. Дегтярева А.В., Захарова Е.Ю., Цыганкова П.Г., Чеглецо-ва Е.В., Готье С.В., Цырюльникова О.М. Недостаточность митохондриальной деоксигуанозинкиназы. Вестник Российского государственного медицинского университета 2009; 1: 27-30.

17. Михайлова С.В., Захарова Е.Ю., Цыганкова П.Г., Абруко-ва А.В. Клинический полиморфизм митохондриальных энцефаломиопатий, обусловленных мутациями гена полимеразы гамма. Рос вестн пед и перинатол 2012; 57: 4(2): 54-61.

18. Bonnen P.E., Yarham J.W., Besse A., Wu P., Faqeih E.A., Al-Asmari A.M. et al. Mutations in FBXL4 cause mitochon-drial encephalopathy and a disorder of mitochondrial DNA maintenance. Am J Hum Genet 2013; 93: 471-481. DOI: 10.1016/j.ajhg.2013.07.017

19. Gai X., Ghezzi D., Johnson M.A., Biagosch C.A., Shamseld-in H.E., Haack T.B. et al. Mutations in FBXL4, encoding

Поступила 20.05.17

поддержки, о которых необходимо сообщить.

a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am J Hum Genet 2013; 93: 482-495. DOI: 10.1016/j.ajhg.2013.07.016

20. Huemer M., Karall D., Schossig A., Abdenur J.E. Clinical, morphological, biochemical, imaging and outcome parameters in 21 individuals with mitochondrial maintenance defect related to FBXL4 mutations. J Inherit Metab Dis 2015; 38 (5): 905-914. DOI:10.1007/s10545-015-9836-6

21. Antoun G., McBride S., Vanstone J., Naas T., Michaud J., Red-path S. Detailed Biochemical and Bioenergetic Characterization of FBXL4-Related Encephalomyopathic Mitochondrial DNA Depletion. JIMD Reports 2016; 27: 1-9. DOI: 10.1007/8904_2015_491

22. Baroy T., Pedurupillay C., Bliksrud Y, Rasmussen M., Holmgren A., VigelandM.D. et al. A novel mutation in FBXL4 in a Norwegian child with encephalomyopathic mitochondrial DNA depletion syndrome 13. Eur J Med Genet 2016; 59; 342-346. DOI: 10.1016/j.ejmg.2016.05.005

23. Winston J. T., Koepp D. M., Zhu C., Elledge S. J., Harper J. W. et al. A family of mammalian F-box proteins. Curr Biol 1999; 9: 1180-1182

24. Nirupam N., Nangia S., Kumar A., Saili A. An unusual case ofhyperlactataemia in a neonate. Intern J STD & AIDS 2012; 24 (12): 986-988. DOI: 10.1177/0956462413487326

25. Lefevere M.F., Verhaeghe B.J., Declerck D.H., Van Bocxlaer J.F., De Leenheer A.P., De Sagher R.M. Metabolic Profiling of Urinary Organic Acids by Single and Multicolumn Capillary Gas Chromatography. J Chromatogr Sci 1989; 27 (1): 23-29.

26. Mroch A.R., Laudenschlager M., Flanagan J.D. Detection of a novel FH whole gene deletion in the propositus leading to subsequent prenatal diagnosis in a sibship with fumarase deficiency. Am J Med Genet Part A 2012; 158A: 155-158. DOI: 10.1002/ajmg.a.34344

27. Dashe J., McIntire R.D., Ramus R., Santos-Ramos, Twick-ler D.M. Hydramnios: anomaly prevalence and sonographic detection. Obstet Gynecol 2002; 100: 134-139.

28. Raju G.P., Li H.C., Bali D., Chen Y.T., Urion D.K., Lidov H.G. et al. A case of congenital glycogen storage disease type IV with a novel GBE1 mutation. J Child Neurol 2008; 23: 349352. DOI: 10.1177/0883073807309248

29. Montero R., Yubero D., Villarroya J., Henares D., Jou C., Rodriguez M.A., Ramos F. et al. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondri-al Dysfunction. PLoS ONE 2016; 11 (2): e0148709.

Просмотров