Гафний. Происхождение гафния

Гафний - тяжёлый тугоплавкий серебристо-белый металл, 72 элемент периодической системы.

История открытия гафния

Д. И. Менделеев предвидел будущее открытие элемента с порядковым номером 72. Но описать его свойства с той же обстоятельностью, как свойства тоже еще не открытых скандия, германия и галлия, Менделеев не мог. Стройность периодической системы необъяснимо нарушали лантан и следующие за ним элементы. Позже Богуслав Браунер, выдающийся чешский химик, друг и сподвижник Менделеева, предложил выделить 14 лантаноидов в самостоятельный ряд, а в основном «тексте» таблицы поместить их все в клетку лантана. В 1907 г. был открыт самый тяжелый лантаноид – лютеций. Впрочем, уверенности в том, что лютеций – последний и самый тяжелый из редкоземельных элементов, у большинства химиков не было.

Систематические поиски элемента №72 начались лишь в XX в.

В 1911 г. Жорж Урбен сообщил об открытии нового элемента в рудах редких земель. В честь некогда населявших территорию Франции древних племен кельтов он назвал новый элемент кельтием. В 1922 г. Довилье, тоже француз, исследуя смесь редких земель, применил усовершенствованные методы рентгенографического анализа. Заметив в спектре две новые линии, Довилье решил, что эти линии принадлежат элементу с порядковым номером 72, и кельтий признали пятнадцатым лантаноидом.

Но радость открытия была недолгой.

К этому времени электронная модель атома была разработана уже настолько, что на ее основе Нильс Бор смог объяснить периодичность строения атомов, объяснить особенности и порядок размещения элементов в периодической системе. На основании своих расчетов Бор заключил, что последним редкоземельным элементом должен быть элемент №71 – лютеций, а элемент №72, по его мнению, должен быть аналогом циркония.

Экспериментально проверить выводы Бора взялись сотрудники Института теоретической физики в Копенгагене Костер и Хевеши. С этой целью они исследовали несколько образцов циркониевых минералов. Остатки, полученные после выщелачивания кипящими кислотами норвежских и гренландских цирконов, были подвергнуты рентгено-спектральному анализу. Линии рентгенограммы совпали с характерными линиями, вычисленными для элемента №72 по закону Мозли, На основании этого Костер и Хевеши в 1923 г. объявили об открытии элемента №72 и назвали его гафнием в честь города, где было сделано это открытие (Hafnia – латинское название Копенгагена). В той же статье они отметили, что вещество, полученное Урбеном и Довилье, не могло быть элементом с порядковым номером 72, так как указанная ими длина волн линий рентгеновского спектра отличалась от теоретических значений намного больше, чем это допустимо для экспериментальной ошибки. А вскоре сотрудники того же института Вернер и Хансен показали, что спектральные линии, обнаруженные Урбеном, соответствовали линиям не гафния, а лютеция; в спектре же образцов, содержащих 90% гафния, не встречалось ни одной спектральной линии Урбена.

В 1924 г. в отчете Комиссии по атомным весам было однозначно указано, что элемент с порядковым номером 72 должен быть назван гафнием, как это предложили Костер и Хевеши. С тех пор названию «гафний» отдали предпочтение все ученые мира, кроме ученых Франции, которые до 1949 г. употребляли название «кельтий».

Получение гафния

Среднее содержание гафния в земной коре около 4 г/т. Ввиду отсутствия у гафния собственных минералов и постоянного сопутствия его цирконию, его получают путём переработки циркониевых руд, где он содержится в количестве 2,5% от веса циркония (циркон содержит 4% HfO 2 , бадделеит 4 – 6% HfO 2).

Гафний сопутствует цирконию не только в природных рудах и минералах, но и во всех искусственных препаратах элемента, включая и металлический цирконий. Это было установлено вскоре после открытия элемента 72.

Цирконий, отделенный от гафния, впервые в 1923 г. получили Костер и Хевеши. А вместе с Янтсеном Хевеши получил первый образец металлического гафния 99%-ной чистоты.

В последующие годы было найдено много способов разделения циркония и гафния, но все они были сложны и трудоемки, и, кроме того, проблема разделения циркония и гафния с практической точки зрения не представляла интереса. Она разрабатывалась преимущественно в научных целях, так как в любой из известных тогда областей применения циркония и его соединений постоянное присутствие примеси гафния совершенно не сказывалось. Самостоятельное же использование гафния и его соединений ничего особенно нового не сулило. Поэтому химия гафния развивалась медленно, а новый металл и его соединения выделялись в ничтожных количествах: до 1930 г. в Европе было получено всего около 70 г чистой двуокиси гафния.

Наш век называют атомным. Не цирконий и не гафний тому причиной, но к атомным делам они оказались сопричастными. И если с точки зрения химии цирконий и гафний – аналоги, то с позиции атомной техники они – антиподы.

Вероятность поглощения нейтронов (в физике, напоминаем, ее называют поперечным сечением захвата) измеряется в барнах. У чистого циркония сечение захвата равно 0,18 барна, а у чистого гафния – 120 барн. Примесь 2% гафния повышает сечение захвата циркония в 20 раз, и именно поэтому цирконий, предназначенный для реакторов, должен содержать не более 0,01% гафния. В природных же соединениях циркония содержание гафния обычно больше 0,5%. Разделение этих элементов стало необходимым хотя бы ради циркония...

В 1949 г. в США был разработан достаточно эффективный процесс разделения циркония и гафния методом жидкостной экстракции. В 1950 г. этот процесс внедрили на заводе, а с января 1951 г. была налажена систематическая выплавка циркония «реакторной чистоты». Гафний в форме гидроокиси, получаемой в процессе разделения, представлял собой вначале отвальный побочный продукт. Но вскоре технике потребовался и сам гафний.

У каждого из шести природных изотопов гафния свой «нейтронный аппетит», о размерах которого можно судить по данным о ядерно-физических свойствах изотопов гафния:

Технология получения гафния

Наиболее распространенный технологический процесс получения гафния состоит в следующем.

Измельченный циркон смешивают с графитом (или другим углеродсодержащим материалом) и нагревают до 1800°C в дуговой плавильной печи без доступа воздуха. При этом цирконий и гафний связываются углеродом, образуя карбиды ZrC и HfC, а кремний улетучивается в виде моноокиси SiO. Если ту же смесь нагревать в присутствии воздуха, продукты реакции наряду с углеродом будут содержать азот и называться карбонитридами.

Карбиды и карбонитриды охлаждают, разбивают на куски и загружают в шахтную печь. Там при температуре около 500°C эти продукты реагируют с газообразным хлором – образуются тетрахлориды циркония и гафния.

Цирконий и гафний разделяют, используя минимальные различия в свойствах соединений этих элементов. Промышленное применение пока нашли два метода: экстракционный, основанный на разной растворимости соединений циркония и гафния в метилизобутилкетоне или трибутилфосфате, и метод дробной кристаллизации комплексных фторидов, основанный на различной растворимости K 2 и K 2 в воде.

Немного подробнее расскажем о химически более интересном первом методе.

Смесь тетрахлоридов растворяют в воде и в раствор добавляют роданистый аммоний NH 4 CNS. Этот раствор затем смешивают с метилизобутилкетоном (МИБК), насыщенным роданистоводородной кислотой HCNS. При таких условиях соединения гафния растворяются в МИБК лучше, чем соответствующие соединения циркония, и гафний концентрируется в органической фазе. Процесс многократно повторяют и получают водный раствор соединений циркония и раствор соли гафния в органическом растворителе. Но и в последнем есть примесь циркония. Чтобы извлечь его, органическую 1 фазу промывают раствором соляной кислоты, а затем экстрагируют гафний раствором серной кислоты. Из сернокислого раствора гафний осаждают в виде гидроокиси, которую прокаливанием переводят в двуокись гафния. Последнюю снова хлорируют и получают тетрахлорид гафния, который еще раз очищают возгонкой.

Из очищенного тетрахлорида металлический гафний восстанавливают магнием или сплавом магния с натрием. Процесс идет в герметически закрытой печи в атмосфере гелия. Полученный таким образом губчатый гафний переплавляют в слитки. Это делается в вакуумных электродуговых или электронно-лучевых печах.

Для приготовления гафния наиболее высокой чистоты обычный металл превращают в тетраиодид, который затем разлагают при высокой температуре.

Весь получаемый в наше время гафний – это попутный продукт производства реакторного циркония. Если бы пришлось получать гафний в самостоятельном производстве, он был бы в несколько раз дороже. А он и так принадлежит к числу самых дорогих металлов. По американским данным, в 1969 г. гафний был в два с половиной раза дороже серебра.

Сейчас больше 90% гафния потребляет ядерная энергетика. Поэтому, когда говорят о возможностях использования гафния в других областях, обычно добавляют эпитет «потенциальные». Скорее всего такое положение сохранится надолго, ибо ядерная энергетика развивается очень быстро, быстрее подавляющего большинства отраслей... Видимо, так уж ему суждено – быть «атомным» металлом. И это элементу, у которого из шести природных изотопов радиоактивен только один!

Физические свойства гафния

Гафний обладает высоким сечением захвата тепловых нейтронов (около 10² барн), тогда как у его химического аналога, циркония, сечение захвата на 2 порядка меньше, около 2×10 −1 барн. В связи с этим цирконий, используемый для создания реакторных ТВЭЛов, должен быть тщательно очищен от гафния. Один из редких природных изотопов гафния, 174 Hf, проявляет слабую альфа-активность (период полураспада 2×10 15 лет).

Гафний в два раза тяжелее циркония, плавится при более высокой температуре (2230°С), чем цирконий. Не менее интересен такой ряд температур плавления; окись гафния - 2912°C, борид гафния - 3250°C, нитрид гафния - 3310°С, карбид гафния - 3890°С; именно поэтому нитриды тугоплавких металлов, в том числе гафния, представляют основу жаропрочных сплавов, высокотемпературных огнеупоров, твердых материалов, сплавов радио- и электротехнического назначения (болометров, резисторов, термокатодов).

При обычной температуре Гафний имеет гексагональную решетку с периодами а = 3,1946Å и с = 5,0511Å. Плотность Гафния 13,09 г/см 3 (20 °С). Гафний тугоплавок, его t пл 2222 °С, t кип 5400 °С. Атомная теплоемкость 26,3 кдж/(кмоль·К) (25-100°С); удельное электросопротивление 32,4·10 -8 ом·м (0°С). Особенность Гафния - высокая эмиссионная способность; работа выхода электрона 5,77·10 -19 дж, или 3,60 эв (980-1550°С); Гафний имеет высокое сечение захвата тепловых нейтронов, равное 115·10 -28 м 2 , или 115 барн (у циркония 0,18·10 -28 м 2 , или 0,18 барн). Чистый Гафний пластичен, легко поддается холодной и горячей обработке (прокатке, ковке, штамповке).

Химические свойства гафния

По химические свойствам Гафний очень похож на цирконий вследствие почти одинаковых размеров ионов этих элементов и полного сходства электронной структуры. Однако химическая активность Гафния несколько меньше, чем Zr. Основная валентность Гафния равна 4. Известны также соединения 3-, 2- и 1-валентного Гафния.

При комнатной температуре компактный Гафний совершенно устойчив к атмосферным газам. Однако при нагревании выше 600 °С быстро окисляется и взаимодействует, подобно цирконию, с азотом и водородом. Гафний отличается коррозионной стойкостью в чистой воде и водяных парах до температур 400 °С. Порошкообразный Гафний пирофорен. Оксид Гафния HfO 2 - белое тугоплавкое (t пл 2780 °С) вещество, обладающее высокой химические стойкостью. Оксид Гафния (IV) и соответствующие ей гидрооксиды амфотерны с преобладанием основных свойств. При нагревании HfO 2 с щелочами и оксидами щелочноземельных металлов образуются гафнаты, например Ме 2 НfO 3 , Ме 4 НfО 4 , Me 2 Hf 2 O 3 .

Гафний, как и тантал, достаточно инертный материал из-за образования тонкой пассивной плёнки оксидов на поверхности. В целом, химическая стойкость гафния гораздо больше, чем у его аналога - циркония.

Лучшим растворителем гафния является фтороводородная кислота (HF), или смесь фтороводородной и азотной кислот, а также царская водка.

При высоких температурах (свыше 1000 К) гафний окисляется на воздухе, а в кислороде сгорает. Реагирует с галогенами. По стойкости к кислотам подобен стеклу. Также как и цирконий, обладает гидрофобными свойствами (не смачивается водой).

Элементы периодической системы с очень близкими химическими свойствами называют аналогами. Наиболее ярким примером химической аналогии элементов может служить сходство циркония и гафния. До сих пор не найдено реакции, в которую вступал бы один из них и не вступал другой. Это объясняется тем, что у гафния и циркония одинаково построены внешние электронные оболочки. И, кроме того, почти одинаковы размеры их атомов и ионов. Цирконий был открыт еще в XVIII в., а гафний настолько удачно маскировался под цирконий, что в течение полутора веков ученые, исследовавшие минералы циркония и продукты их переработки, даже не подозревали, что фактически имеют дело с двумя элементами. Правда, в XIX в. было опубликовано несколько сообщений об открытии в минералах циркония неизвестных элементов: острания (Брейтхаупт, 1825), нория (Сванберг, 1845), джаргония (Сорби, 1869), нигрия (Чарч, 1869), эвксения (Гофман и Прандтль, 1901). Однако ни одной из этих «заявок» не подтвердили контрольные опыты.

Важнейшие химические соединения

Соединения двухвалентного гафния

  • HfBr 2 - твёрдое вещество чёрного цвета, самовоспламеняющееся на воздухе. Разлагается при температуре 400 °C на гафний и тетрабромид гафния. Получают диспропорционированием трибромида гафния в вакууме при нагревании.
  • Hf(HPO 4) 2 - белый осадок, растворимый в серной и фтороводородной кислотах. Получают обработкой растворов солей гафния (II) ортофосфорной кислотой.

Соединения трёхвалентного гафния

  • HfBr 3 - чёрно-синее твёрдое вещество. Диспропорционирует при 400 °C на дибромид и тетрабромид гафния. Получают восстановлением тетрабромида гафния при нагревании в атмосфере водорода или с металлическим алюминием.

Соединения четырёхвалентного гафния

  • HfO 2 - бесцветные моноклинные кристаллы (плотность - 9,98 г/см³) или бесцветные тетрагональные кристаллы (плотность - 10,47 г/см³). Последние имеют t пл 2900 °C, малорастворимы в воде, диамагнитны, обладают более основным характером, чем ZrO 2 и обнаруживают каталитические свойства. Получают нагреванием металлического гафния в кислороде или прокаливанием гидроксида, диоксалата, дисульфата гафния.
  • Hf(OH) 4 - белый осадок, растворяющийся при добавлении щёлочей и пероксида водорода с образованием пероксогафниатов. Получают глубоким гидролизом солей четырёхвалентного гафния при нагревании или обработкой растворов солей гафния (IV) щёлочами.
  • HfF 4 - бесцветные кристаллы. t пл 1025 °C, плотность - 7,13 г/см³. Растворим в воде. Получают термическим разложением соединения (NH 4) 2 в токе азота при 300 °C.
  • HfCl 4 - белый порошок, сублимирующийся при 317 °C. t пл 432 °C. Получают действием хлора на металлический гафний, карбид гафния или смесь оксида гафния (II) с углем.
  • HfBr 4 - бесцветные кристаллы. Сублимируются при 322 °C. t пл 420 °C. Получают действием паров брома на нагретую до 500 °C смесь оксида гафния (II) с углем.
  • HfI 4 - жёлтые кристаллы. Сублимирует при 427 °C и термически диссоциирует при 1400 °C. Получается взаимодействием гафния с иодом при 300 °C.
Применение гафния

Основные области применения металлического гафния - производство сплавов для аэрокосмической техники, атомная промышленность, специальная оптика.

  • В атомной технике используется способность гафния к захвату нейтронов, и его применение в атомной промышленности - это производство регулирующих стержней, специальной керамики и стекла (оксид, карбид, борид, оксокарбид, гафнат диспрозия, гафнат лития). Особенностью и преимуществом диборида гафния является очень малое газовыделение (гелий, водород) при «выгорании» бора.
  • В оптике применяется оксид гафния в связи с его температурной стойкостью (т. пл. 2780 °C) и очень высоким показателем преломления. Значительную сферу потребления гафния составляет производство специальных марок стекла для волоконно-оптических изделий, а также для получения особо высококачественных оптических изделий, покрытия зеркал, в том числе и для приборов ночного видения, тепловизоров. Схожую область применения имеет и фторид гафния.
  • Карбид и борид гафния (т. пл. 3250 °C) находят применение в качестве чрезвычайно износоустойчивых покрытий и производства сверхтвердых сплавов. Кроме того, карбид гафния является одним из самых тугоплавких соединений (т. пл. 3890 °C) и используется для производства сопел космических ракет и некоторых конструкционных элементов газофазных ядерных реактивных двигателей.
  • Гафний отличает сравнительно низкая работа выхода электрона (3,53 эВ), и поэтому он применяется для изготовления катодов мощных радиоламп и электронных пушек. В то же время это его качество наряду с высокой температурой плавления позволяет использовать гафний для производства электродов для сварки металлов в аргоне и особенно электродов (катодов) для сварки низкоуглеродистой стали в углекислом газе. Стойкость таких электродов в углекислом газе более чем в 3,7 раза выше, чем вольфрамовых. В качестве эффективных катодов с малой работой выхода применяется также гафнат бария.
  • Карбид гафния в виде мелкопористого керамического изделия может служить чрезвычайно эффективным коллектором электронов при условии испарения с его поверхности в вакууме паров цезия-133, в этом случае работа выхода электронов снижается менее чем 0,1-0,12 эВ и этот эффект может быть использован для создания высокоэффективных термоэмиссионных электрогенераторов и частей мощных ионных двигателей.
  • На основе диборида гафния и никеля разработано и уже давно используется высокоизносоустойчивое и твердое композиционное покрытие.
  • Сплавы тантал-вольфрам-гафний являются лучшими сплавами для подачи топлива в газофазных ядерных ракетных двигателях.
  • Сплавы титана, легированные гафнием, применяются в судостроении (производство деталей судовых двигателей), а легирование гафнием никеля не только увеличивает его прочность и коррозионную стойкость, но и резко улучшает свариваемость и прочность сварных швов.
  • Добавление гафния к танталу резко увеличивает его стойкость к окислению на воздухе (жаростойкость) за счет образования плотной и непроницаемой пленки сложных оксидов на поверхности, и, кроме всего, эта пленка оксидов очень стойка к теплосменам (тепловой удар). Эти свойства позволили создать очень важные сплавы для ракетной техники (сопла, газовые рули). Один из лучших сплавов гафния и тантала для сопел ракет содержит до 20 % гафния. Также следует отметить большой экономический эффект при применении сплава гафний-тантал для производства электродов для воздушно-плазменной и кислородно-пламенной резки металлов. Опыт применения такого сплава (гафний - 77 %, тантал - 20 %, вольфрам - 2 %, серебро - 0,5 %, цезий - 0,1 %, хром - 0,4 %) показал в 9 раз больший ресурс работы по сравнению с чистым гафнием.
  • Легирование гафнием резко упрочняет многие сплавы кобальта, очень важных в турбостроении, нефтяной, химической и пищевой промышленности.
  • Гафний используется в некоторых сплавах для сверхмощных постоянных магнитов на основе редких земель (в частности, на основе тербия и самария).
  • Сплав карбида гафния (HfC, 20 %) и карбида тантала (TaC, 80 %) является самым тугоплавким сплавом (т. пл. 4216 °C). Кроме того, есть отдельные указания на то, что при легировании этого сплава небольшим количеством карбида титана температура плавления может быть увеличена еще на 180 градусов.
  • Добавлением 1 % гафния в алюминий получают сверхпрочные сплавы алюминия с размером зерен металла 40-50 нм. При этом не только упрочняется сплав, но и достигается значительное относительное удлинение и повышается предел прочности при сдвиге и кручении, а также улучшается вибростойкость.
  • Диэлектрики с высокой диэлектрической проницаемостью на основе оксида гафния в течение следующего десятилетия заменят в микроэлектронике традиционный оксид кремния, что позволит достичь гораздо более высокой плотности элементов в чипах . С 2007 года диоксид гафния используется в 45-нм процессорах Intel Penryn . Также в качестве диэлектрика с высокой диэлектрической проницаемостью в электронике применяется силицид гафния. Сплавы гафния и скандия применяются в микроэлектронике для получения резистивных пленок с особыми свойствами.
  • Гафний используется для производства высококачественных многослойных рентгеновских зеркал.

в начале месяца научно-исследовательский консорциум Semiconductor Research Corporation (SRC) не объявил о «революционном» успехе в создании изоляторов, содержащих этот металл. По имеющимся данным, компании Intel и IBM планируют использовать гафний для создания более быстрых и энергетически эффективных микропроцессоров.

Оксид гафния заменит используемый сейчас оксид кремния. Таким образом, элемент, занимающий в таблице Мендлеева 72 позицию, должен обеспечить прорыв в будущее поколение полупроводниковых приборов. Производители рассчитывают использовать его в чипах, которые встречаются очень широко – от сотовых телефонов до серверов.

Если редкий элемент будут так массово использовать, хватит ли его на всех?

Специалисты считают, что повода для беспокойства нет. Главным образом потому, что количество гафния, используемое в одном чипе, ничтожно мало.

Джим Макгрегор (Jim McGregor), аналитик организации In-Stat, говорит: «Даже если взять весь гафний, необходимый для 300-мм пластины, его будет невозможно увидеть невооруженным глазом».

Бернард Мейерсон (Bernard Meyerson), главный технолог IBM, выразил ситуацию еще более образно: по его словам, если взять один кубический сантиметр гафния и распределить по поверхности слоем такой толщины, который используется в чипах, будет покрыта площадь, равная 10 футбольным полям. Причем, эта оценка взята с запасом в худшую сторону – во-первых, используется не чистый гафний, а его оксид, во-вторых, толщина слоя по мере совершенствования технологии будет постоянно снижаться.

Мировые ресурсы и добыча гафния

Цены на гафний 99 % в 2007 году в среднем $780 за килограмм

Ежегодно все страны мира, вместе взятые, добывают около 50 тонн этого вещества. Оно не встречается в виде жил, как золото или другие металлы, а получается в качестве побочного продукта при добыче диоксида циркония (цирконий - металл, довольно широко распространенный на территории США, Бразилии, Австралии, России и Китая).

Мировые ресурсы гафния в пересчете на двуокись гафния несколько превышают 1 миллион тонн. Структура распределения этих ресурсов выглядит приблизительно следующим образом:

  • Австралия - более 630 тысяч тонн,
  • ЮАР - почти 287 тысяч тонн,
  • США - чуть более 105 тысяч тонн,
  • Индия - около 70 тысяч тонн,
  • Бразилия - 9,88 тысяч тонн.

Подавляющая часть сырьевой базы гафния в зарубежных странах представлена цирконом прибрежных морских россыпей.

Запасы гафния в России и СНГ, по оценкам независимых специалистов, весьма велики и в этом отношении при развитии гафниевой промышленности Россия способна стать безусловным лидером на мировом рынке гафния. Стоит также, в связи с этим, упомянуть весьма значительные ресурсы гафния на Украине. Основные гафнийсодержащие минералы в России и СНГ представлены лопаритом, цирконом, бадделеитом, редкометалльными щелочными гранитами.

Близость атомных структур гафния и циркония делает процесс разделения дорогостоящим. Около 60-70% полученного гафния идет на производство так называемых «графитовых стержней», используемых для управления реакцией в ядерном реакторе. Большая часть остального гафния идет на изготовление сплавов, применяемых в авиационных двигателях. Вопрос о недостатке гафния пока не вставал, и его добычу при необходимости можно увеличить.

Влияние гафния на живые организмы

Токсическое действие гафния исследовалось в опытах на животных. ЛД50 (доза, вызывающая 50 % смертность) для крыс при внутрижелудочном введении составляла около 400 мг/кг массы тела. В желудке развивались некротические изменения, а при ингаляционном введении такие изменения на слизистой бронхов, отмечали и отек легких. Хронические отравления развивались у животных при ежесуточном введении в течение 5 часов карбида и нитрида гафния в концентрации 10,8 мг/м3 в продолжении 6 и 9 месяцев.


5. Применение

Основные области применения металлического гафния — производство сплавов для аэрокосмической техники, атомная промышленность, специальная оптика.

  • В атомной технике используется способность гафния к захвату нейтронов, и его применение в атомной промышленности — это производство регулирующих стержней, специальной керамики и стекла. Особенностью и преимуществом диборида гафния является очень малое газовыделение при «выгорании» бора.
  • В оптике применяется оксид гафния в связи с его температурной стойкостью и очень высоким показателем преломления. Значительную сферу потребления гафния составляет производство специальных марок стекла для волоконно-оптических изделий, а также для получения особо высококачественных оптических изделий, покрытия зеркал, в том числе и для приборов ночного видения, тепловизоров. Схожую область применения имеет и фторид гафния.
  • Карбид и борид гафния находят применение в качестве чрезвычайно износоустойчивых покрытий и производства сверхтвердых сплавов. Кроме того, карбид гафния является одним из самых тугоплавких соединений и используется для производства сопел космических ракет и некоторых конструкционных элементов газофазных ядерных реактивных двигателей.
  • Гафний отличает сравнительно низкая работа выхода электрона, и поэтому он применяется для изготовления катодов мощных радиоламп и электронных пушек. В то же время это его качество наряду с высокой температурой плавления позволяет использовать гафний для производства электродов для сварки металлов в аргоне и особенно электродов для сварки низкоуглеродистой стали в углекислом газе. Стойкость таких электродов в углекислом газе более чем в 3,7 раза выше, чем вольфрамовых. В качестве эффективных катодов с малой работой выхода применяется также гафнат бария.
  • Карбид гафния в виде мелкопористого керамического изделия может служить чрезвычайно эффективным коллектором электронов при условии испарения с его поверхности в вакууме паров цезия-133, в этом случае работа выхода электронов снижается менее чем 0,1-0,12 эВ и этот эффект может быть использован для создания высокоэффективных термоэмиссионных электрогенераторов и частей мощных ионных двигателей.
  • На основе диборида гафния и никеля разработано и уже давно используется высокоизносоустойчивое и твердое композиционное покрытие.
  • Сплавы тантал-вольфрам-гафний являются лучшими сплавами для подачи топлива в газофазных ядерных ракетных двигателях.
  • Сплавы титана, легированные гафнием, применяются в судостроении, а легирование гафнием никеля не только увеличивает его прочность и коррозионную стойкость, но и резко улучшает свариваемость и прочность сварных швов.
  • Добавление гафния к танталу резко увеличивает его стойкость к окислению на воздухе за счет образования плотной и непроницаемой пленки сложных оксидов на поверхности, и, кроме всего, эта пленка оксидов очень стойка к теплосменам. Эти свойства позволили создать очень важные сплавы для ракетной техники. Один из лучших сплавов гафния и тантала для сопел ракет содержит до 20 % гафния. Также следует отметить большой экономический эффект при применении сплава гафний-тантал для производства электродов для воздушно-плазменной и кислородно-пламенной резки металлов. Опыт применения такого сплава показал в 9 раз больший ресурс работы по сравнению с чистым гафнием.
  • Легирование гафнием резко упрочняет многие сплавы кобальта, очень важных в турбостроении, нефтяной, химической и пищевой промышленности.
  • Гафний используется в некоторых сплавах для сверхмощных постоянных магнитов на основе редких земель.
  • Сплав карбида гафния и карбида тантала является самым тугоплавким сплавом. Кроме того, есть отдельные указания на то, что при легировании этого сплава небольшим количеством карбида титана температура плавления может быть увеличена еще на 180 градусов.
  • Добавлением 1 % гафния в алюминий получают сверхпрочные сплавы алюминия с размером зерен металла 40-50 нм. При этом не только упрочняется сплав, но и достигается значительное относительное удлинение и повышается предел прочности при сдвиге и кручении, а также улучшается вибростойкость.
  • Диэлектрики с высокой диэлектрической проницаемостью на основе оксида гафния в течение следующего десятилетия заменят в микроэлектронике традиционный оксид кремния, что позволит достичь гораздо более высокой плотности элементов в чипах. С 2007 года диоксид гафния используется в 45-нм процессорах Intel Penryn. Также в качестве диэлектрика с высокой диэлектрической проницаемостью в электронике применяется силицид гафния. Сплавы гафния и скандия применяются в микроэлектронике для получения резистивных пленок с особыми свойствами.
  • Гафний используется для производства высококачественных многослойных рентгеновских зеркал.

Перспективные области применения

Метастабильные ядра гафния-178m2 содержат избыточную энергию, которая может быть высвобождена с помощью внешнего воздействия на ядро, и этот эффект может быть применен для конструирования безопасного ядерного оружия. Энергия, выделяемая 1 граммом гафния-178m2, примерно соответствует 50 кг тротила. Метастабильный изомер гафния может быть использован для «накачки» компактных лазеров боевого назначения.

Мирное применение этого ядерного изотопа интересно тем, что он может быть использован как мощный источник гамма-лучей, допускающий регулировку дозы излучения, источник энергии для транспорта, очень ёмкий аккумулятор энергии.

Основной проблемой использования гафния-178m2 является трудность наработки этого ядерного изомера. В то же время он является обычным продуктом атомной электростанции. Эксплуатация так называемого «гафниевого цикла» и расширение сектора применения гафния будет возрастать по мере увеличения использования гафния для регулировки реакторов. По мере накопления изомера в странах с развитой атомной промышленностью произойдет и становление «гафниевой энергетики».

Разработками так называемой «гафниевой бомбы» на основе изомера Hf с 1998 по 2004 год занималось агентство DARPA. Однако, даже использование источников рентгеновского излучения большой мощности не позволило обнаружить эффект индуцированного распада. В 2005 году было показано, что при использовании существующих на сегодняшний день технологий высвобождение избыточной энергии из ядра гафния-178m2 не представляется возможным.

Энергия ионизации
(первый электрон) 575,2 (5,96) кДж/моль (эВ) Электронная конфигурация 4f 14 5d 2 6s 2 Химические свойства Ковалентный радиус 144 пм Радиус иона (+4e) 78 пм Электроотрицательность
(по Полингу) 1,3 Электродный потенциал 0 Степени окисления 4 Термодинамические свойства простого вещества Плотность 13,31 /см ³ Молярная теплоёмкость 25,7 Дж /( ·моль) Теплопроводность 23,0 Вт /( ·) Температура плавления 2 503 Теплота плавления (25,1) кДж /моль Температура кипения 5 470 Теплота испарения 575 кДж /моль Молярный объём 13,6 см ³/моль Кристаллическая решётка простого вещества Структура решётки гексагональная Параметры решётки 3,200 Отношение c/a 1,582 Температура Дебая n/a
Hf 72
178,49
4f 14 5d 2 6s 2
Гафний

Гафний — тяжёлый тугоплавкий серебристо-белый металл, 72 элемент периодической системы. Открыт в 1923 г. Гафний искали среди редкоземельных элементов, так как не было выяснено строение 6-го периода системы Д. И. Менделеева. В 1911 г. французский химик Ж. Урбен объявил об открытии нового элемента, названного им кельтием.

В действительности он получил смесь, состоящую из иттербия и лютеция и небольшого количества гафния. И только после того, как Н. Бор на основании квантовомеханических расчётов показал, что последним редкоземельным элементом является элемент с номером 71, стало ясно, что гафний — аналог циркония. Базируясь на выводах Бора, который предсказал его свойства и валентность, в 1923 Дирк Костер и Дьёрдь де Хевеши систематически проанализировали рентгеноспектральным методом норвежские и гренландские цирконы. Совпадение линий рентгенограмм остатков после выщелачивания циркона кипящими растворами кислот с вычисленными по закону Мозли для 72-го элемента позволило исследователям объявить об открытии элемента, который они назвали гафнием в честь города, где было сделано открытие (Hafnia — латинское название Копенгагена). Начавшийся после этого спор о приоритете между Ж. Урбеном, Н. Костером и Д. Хевеши продолжался длительное время. В 1949 г. название элемента «гафний» было утверждено Международной комиссией и принято всюду.

Получение

Ввиду отсутствия у гафния собственных минералов и постоянного сопутствия его цирконию, его получение производят путем переработки циркониевых руд (где он содержится в виде примеси 2,5 % от веса циркония). В мире в год в среднем добывается около 70 тонн гафния, и объёмы его добычи пропорциональны объёмам добычи циркония. Интересна особенность скандиевого минерала — тортвейтита: в нём содержится гафния в процентном отношении гораздо больше, чем циркония, и это обстоятельство очень важно при переработке тортвейтита на скандий и концентрировании гафния из него.

Мировые ресурсы гафния

Цены на гафний 99% в 2007 году в среднем $780 за килограмм /по материалам infogeo.ru/metalls

Мировые ресурсы гафния в пересчете на двуокись гафния несколько превышают 1 миллион тонн. Структура распределения этих ресурсов выглядит приблизительно следующим образом:

Австралия — более 630 тысяч тонн,

ЮАР — почти 287 тысяч тонн,

США — чуть более 105 тысяч тонн,

Индия — около 70 тысяч тонн,

Бразилия — 9,88 тысяч тонн.

Подавляющая часть сырьевой базы гафния в зарубежных странах представлена цирконом прибрежных морских россыпей.

Запасы гафния в России и СНГ, по оценкам независимых специалистов, весьма велики и в этом отношении при развитии гафниевой промышленности Россия способна стать безусловным лидером на мировом рынке гафния. Стоит также, в связи с этим, упомянуть весьма значительные ресурсы гафния на Украине. Основные гафнийсодержащие минералы в России и СНГ представлены лопаритом, цирконом, бадделеитом, редкометалльными щелочными гранитами.

Физические свойства

Гафний обладает высоким сечением захвата тепловых нейтронов (около 10² барн), тогда как у его химического аналога, циркония, сечение захвата на 2 порядка меньше, около 2×10 -1 барн. В связи с этим цирконий, используемый для создания реакторных ТВЭЛов, должен быть тщательно очищен от гафния. Один из редких природных изотопов гафния, 174 Hf, проявляет слабую альфа-активность (период полураспада 2×10 15 лет).

Химические свойства

Гафний, как и тантал, достаточно инертный материал из-за образования тонкой пассивной плёнки оксидов на поверхности. В целом, химическая стойкость гафния гораздо больше, чем у его аналога — циркония.

Лучшим растворителем гафния является фтороводородная кислота (HF), или смесь фтороводородной и азотной кислот, а также царская водка.

При высоких температурах (свыше 1000 К) гафний окисляется на воздухе, а в кислороде сгорает. Реагирует с галогенами. По стойкости к кислотам подобен стеклу. Также как и цирконий, обладает гидрофобными свойствами (не смачивается водой).

Важнейшие химические соединения

Соединения двухвалентного гафния

  • HfBr 2 — твёрдое вещество чёрного цвета, самовоспламеняющееся на воздухе. Разлагается при температуре 400 °C на гафний и тетрабромид гафния. Получают диспропорционированием трибромида гафния в вакууме при нагревании.
  • Hf(HPO 4) 2 — белый осадок, растворимый в серной и фтороводородной кислотах. Получают обработкой растворов солей гафния (II) ортофосфорной кислотой.

Соединения трёхвалентного гафния

  • HfBr 3 — чёрно-синее твёрдое вещество. Диспропорционирует при 400 °C на дибромид и тетрабромид гафния. Получают восстановлением тетрабромида гафния при нагревании в атмосфере водорода или с металлическим алюминием .

Соединения четырёхвалентного гафния

  • HfO 2 — бесцветные моноклинные кристаллы (плотность — 9,98 г/см³) или бесцветные тетрагональные кристаллы (плотность — 10,47 г/см³). Последние имеют t пл 2900 °C, малорастворимы в воде, диамагнитны, обладают более осно́вным характером, чем ZrO 2 и обнаруживают каталитические свойства. Получают нагреванием металлического гафния в кислороде или прокаливанием гидроксида, диоксалата , дисульфата гафния.
  • Hf(OH) 4 — белый осадок, растворяющийся при добавлении щёлочей и пероксида водорода с образованием пероксогафниатов. Получают глубоким гидролизом солей четырёхвалентного гафния при нагревании или обработкой растворов солей гафния (IV) щёлочами .
  • HfF 4 — бесцветные кристаллы. t пл 1025 °C, плотность — 7,13 г/см³. Растворим в воде. Получают термическим разложением соединения (NH 4) 2 в токе азота при 300 °C.
  • HfCl 4 — белый порошок, сублимирующийся при 317 °C. t пл 432 °C. Получают действием хлора на металлический гафний, карбид гафния или смесь оксида гафния (II) с углем .
  • HfBr 4 — бесцветные кристаллы. Сублимируются при 322 °C. t пл 420 °C. Получают действием паров брома на нагретую до 500 °C смесь оксида гафния (II) с углем.
  • HfI 4 — жёлтые кристаллы. Сублимирует при 427 °C и термически диссоциирует при 1400 °C. Получается взаимодействием гафния с иодом при 300 °C.

Применение

Основные области применения металлического гафния — производство сплавов для аэрокосмической техники, атомная промышленность, специальная оптика.

  • В атомной технике используется способность гафния к захвату нейтронов, и его применение в атомной промышленности — это производство регулирующих стержней, специальной керамики и стекла (оксид , карбид , борид , оксокарбид , гафнат диспрозия , гафнат лития). Особенностью и преимуществом диборида гафния является очень малое газовыделение (гелий , водород) при «выгорании» бора .
  • В оптике применяется оксид гафния в связи с его температурной стойкостью (т. пл. 2780 °C) и очень высоким показателем преломления . Значительную сферу потребления гафния составляет производство специальных марок стекла для оптоволоконных изделий, а также для получения особо высококачественных оптических изделий, покрытия зеркал, в том числе и для приборов ночного видения, тепловизоров . Схожую область применения имеет и фторид гафния .
  • Карбид и борид гафния (т. пл. 3250 °C) находят применение в качестве чрезвычайно износоустойчивых покрытий и производства сверхтвердых сплавов. Кроме того, карбид гафния является одним из самых тугоплавких соединений (т. пл. 3890 °C) и используется для производства сопел космических ракет и некоторых конструкционных элементов газофазных ядерных реактивных двигателей .
  • Гафний отличает сравнительно низкая работа выхода электрона (3,53 эВ), и поэтому он применяется для изготовления катодов мощных радиоламп и электронных пушек. В то же время это его качество наряду с высокой температурой плавления позволяет использовать гафний для производства электродов для сварки металлов в аргоне и особенно электродов (катодов) для сварки низкоуглеродистой стали в углекислом газе . Стойкость таких электродов в углекислом газе более чем в 3,7 раза выше, чем вольфрамовых . В качестве эффективных катодов с малой работой выхода применяется также гафнат бария .
  • Карбид гафния в виде мелкопористого керамического изделия может служить чрезвычайно эффективным коллектором электронов при условии испарения с его поверхности в вакууме паров цезия-133 , в этом случае работа выхода электронов снижается менее чем 0,1-0,12 эВ и этот эффект может быть использован для создания высокоэффективных термоэмиссионных электрогенераторов и частей мощных ионных двигателей.
  • На основе диборида гафния и никеля разработано и уже давно используется высокоизносоустойчивое и твердое композиционное покрытие.
  • Сплавы тантал -вольфрам -гафний являются лучшими сплавами для подачи топлива в газофазных ядерных ракетных двигателях.
  • Сплавы титана, легированные гафнием, применяются в судостроении (производство деталей судовых двигателей), а легирование гафнием никеля не только увеличивает его прочность и коррозионную стойкость, но и резко улучшает свариваемость и прочность сварных швов.
  • Добавление гафния к танталу резко увеличивает его стойкость к окислению на воздухе (жаростойкость — 0,4 %) показал в 9 раз больший ресурс работы по сравнению с чистым гафнием. температура плавления может быть увеличена еще на 180 градусов.процессорах рентгеновское излучение), и этот эффект может быть применен для конструирования безопасного (не создающего радиоактивного заражения) ядерного оружия. Энергия, выделяемая 1 граммом гафния-178m2, примерно соответствует 50 кг тротила . Метастабильный изомер гафния может быть использован для «накачки» компактных лазеров боевого назначения (замещение части атомов гафния на 178m2 Hf позволяет, используя окись гафния как компонент лазерного кристалла, совместить источник энергии и излучатель).

    Мирное применение этого ядерного изотопа интересно тем, что он может быть использован как мощный источник гамма-лучей, допускающий регулировку дозы излучения (дефектоскопия), источник энергии для транспорта , очень ёмкий аккумулятор энергии (1 килограмм примерно эквивалентен 4,35 тонны бензина).

    Основной проблемой использования гафния-178m2 является трудность наработки этого ядерного изомера. В то же время он является обычным продуктом (отходом) атомной электростанции (отработаные поглотительные гафниевые стержни). Эксплуатация так называемого «гафниевого цикла» и расширение сектора применения гафния будет возрастать по мере увеличения использования гафния для регулировки реакторов. По мере накопления изомера в странах с развитой атомной промышленностью произойдет и становление «гафниевой энергетики».

    Разработками так называемой «гафниевой бомбы» на основе изомера 178m2 Hf с 1998 по 2004 год занималось агентство DARPA. Однако, даже использование источников рентгеновского излучения большой мощности не позволило обнаружить эффект индуцированного распада. В 2005 году было показано, что при использовании существующих на сегодняшний день технологий высвобождение избыточной энергии из ядра гафния-178m2 не представляется возможным.

Гафний – это элемент V периода и 4-й группы периодической системы, принадлежит к подгруппе титана (цирконий, титан, гафний и резерфордий). По свойствам своим и своих соединений гафний близок к цирконию, от которого отделяется с большим трудом. Химики даже шутят, что гафний — «тень» циркония. Металлический гафний получен действием натрия на гафний-фтористо-водородную кислоту; удельный вес элемента – 12,1; температура плавления очень высока — 2233 °C. В природе гафний встречается всегда совместно с цирконием; обычно его количество в минералах очень невелико, только в альвите, циртолите, тортвейтите и некоторых других минералах количество его доходит до 30% и выше.

Окись гафния при накаливании испускает яркий свет подобно окиси циркония. Характерная реакция - образование фосфата гафния, обладающего наименьшей растворимостью из всех известных фосфатов.

Гафний: история открытия

Очень интересна история открытия гафния, блестяще подтвердившая теорию строения атома Бора. Рентгеноскопический анализ указал, что между барием с порядковым числом 56 и танталом с порядковым числом 73 должно находиться 16 элементов. Было же их известно в этом промежутке только 14 - редкие земли; не хватало элементов с порядковыми числами 61 и 72. Поиски элемента 72 в группе редкоземельных элементов не увенчались успехом.

Теория Бора показала, что редкоземельные элементы характеризуются заполнением электронами глубоколежащего слоя и что это заполнение оканчивается у элемента 71 (лютеция). Стало быть, элемент 72 не может принадлежать к группе редких земель; теоретически было установлено, что он должен принадлежать к подгруппе 4-й группы и обладать большим сходством с цирконием. Поиски его в минералах, содержащих цирконий, произведенные рентгеноскопическим путем в лаборатории Бора, сразу привели к положительному результату (Дирк Костер и Дьёрдь де Хевеши, 1923 г.). Дальнейшие исследования установили, что гафний действительно очень близок к цирконию и отличен от редкоземельных элементов. Название же свое гафний получил от латинского наименования города Копенгаген — Hafnia, т.к. именно там и был открыт этот химический элемент.

Применение Гафния

Гафний активно применяется в энергетике и электронике. Для использования на атомных электростанциях из него изготавливают регулирующие стержни реакторов и экраны для защиты от нейтронного излучения. Жаропрочные сплавы гафния используют в ракетостроении и авиации. Слоем гафния покрывают аппараты для химической промышленности, т.к. этот химический элемент устойчив практически ко всем веществам. Твердый раствор карбидов гафния и тантала, плавящийся выше 4000 °С, — самый тугоплавкий керамический материал; из него изготовляют тигли для плавки тугоплавких металлов, детали реактивных двигателей. Широкое применение имеют также различные сплавы гафния.

Также гафний применяют в ювелирном деле. Изделия из гафния имеют серебристо-белый цвет и яркий блеск, который не тускнеет, правда такие украшения очень дороги.

Hf - хим. элемент IV группы периодической системы элементов; ат. и. 72, ат. м. 178,49. Серебристо -белый металл. В соединениях проявляет степень окисления +4. Природный Г. состоит из шести стабильных изотопов с массовыми числами 174, 176-180. Получены искусственные радиоактивные с массовыми числами 170-173,175, 179, 180, 181, 183 и периодами полураспада соответственно 1,87 ч, 16 ч, 5 лет, 23,6 ч, 70 дней, 19 сек, 5,5 ч, 46 дней и 64 мин.

Гафний открыли в 1922 венг. химик Д. Xевеши и голл. физик Д. Костер. Металлический Г, получил в 1925 Д. Хевеши. Начало широкого использования Гафний связано с применением его в ядерной технике. Г.- рассеянный элемент, не имеет собственных минералов и в природе обычно сопутствует цирконию (1-7%). Его содержание в земной коре 3,2 10-4%. Г. существует в двух полиморфных модификациях. При обычной т-ре устойчива гексагональная плотноупакованная решетка типа магния, с периодами а = 3,1883 А, с = 5,0422 А, с/а = 1,5815 (при содержании 0,78% Zr). Выше т-ры 1760 ± 35° С устойчива объемноцентрированная кубическая решетка (тип α -Fe) с периодом а = 3,60 А (т-ра 2000° С). Плотность (т-ра 20° С) 13,31 г/см3 tпл 2222 ± 30° С; tкяп = 5400° с. Температурный коэфф. линейного расширения (при содержании 0,86- 0,89% Zr) в интервале т-р 0-1000° С составляет 5,9 10 -6 град-1. Коэфф теплопроводности (при содержа вин 2% Zr) уменьшается с 0,0533 до 0,0490 кал/см сек град при повышении т-ры от 50 до 500° С. Удельная теплоемкость (т-ра 25° С) 0,0342 кал/г град. Т-ра Дебая для Г. чистотой 99,95-99,98% составляет 251,5-252,3 К. Удельное электрическое сопротивление (т-ра 20° С) 40 10-8 ом м, температурный коэфф. электросопротивления в интервале т-р 0-800° С составляет 3,51 10-3 град-1.

Особенность гафния- высокая эмиссионная способность. Работа выхода электронов 3,53 эв. Поперечное сечение захвата тепловых нейтронов 105 ± 5 барн. Г. парамагнитен. Мех. св-ва Г. существенно зависят от чистоты и условий приготовления образца. Чистый металлический Г. поддается холодной и горячей обработке (фрезерованию, сверлению, прокатке). У йодидного Г. HV = 152 (нагрузка 1,2 кг), Н = 206 кг/мм2 (нагрузка 60 г). Коэфф. сжимаемости при т-ре 303 К составляет 0,901 10-6 см2/кг. Модуль Юнга йодидного Г. (0,72% Zr) после отжига в вакууме при т-ре 1040° С равен 14 105 кгс/см’ При обычных условиях Г. стоек к действию горячей воды, паровоздушных смесей, жидкого натрия, щелочей, разбавленной соляной к-ты, азотной к-ты любой концентрации, кислорода, азота и водорода. В порошкообразном виде пирофорен. Хорошо растворяется в «царской водке», концентрированной серной и фтористоводородной к-тах. При высокой т-ре заметно реагирует с водородом, водой, кислородом, с галогенами (образуя HfX4), с азотом и углеродом образует тугоплавкие соединения: нитрид HfN (tпл 2982 ± 50° С) и карбид НfC (tпл 3887 ±50° С)

Для разделения соединений Г. и циркония прибегают к дробной кристаллизации, фракционированному осаждению (наиболее быстрый и эффективный в лабораторной практике метод), ионному обмену, адсорбции, электролизу, жидкостной экстракции (наиболее распространенной в пром. произ-ве), фракционной дистилляции и селективному восстановлению (наиболее перспективны при хлорном методе вскрытия циркона). Металлический Г. получают металлотермическим восстановлением HfCl4 магнием, каль-цием, натрием или их смесями, термической диссоциацией галогенидов низшей валентности или карбонила, электролизом расплавленных сред.

Для дополнительной очистки используют йодидное (наиболее распространенное) или электролитическое рафинирование, диспропорционирова-ние, электроннолучевую и электродуговую плавку в высоком вакууме. Г. металлический, а также его соединения (напр., НfO и НfO2) используют для изготовления стержней-регуляторов ядерных реакторов и защитных приспособлений. Кроме того, Г. в чистом виде и в виде сплавов находит применение в электро-, радио- и рентгенотехнике (электрические нити и электроды накаливания, чехлы для угольных и графитовых анодов, геттеры и др.). Применяют его также в качестве повышающей жаропрочность легирующей добавки в спец. сталях и сплавах с палладием (потенциометрическая проволока), с медью (контактные пластины сварочных электродов), в жаропрочных сплавах на основе молибдена, тантала, вольфрама и ниобия для ракетной и космической техники.

Перспективен как конструкционный материал для реактивных двигателей, хим. аппаратов и др. Окись Г. применяют для изготовления тугоплавких огнеупорных материалов, как составную часть спец. оптических стекол, эксплуатируемых при высоких т-рах, как катализатор мн. органических реакций и др.; перспективен как связка в жаропрочных материалах на основе боридов, карбидов, силицидов и др. соединений щелочноземельных металлов, тория, урана и для изготовления керамико-металлических материалов в сочетании с ниобием, танталом, титаном и ванадием. Карбид Г., самый тугоплавкий среди простых карбидов,- высокоогнеупорный материал.

Характеристика элемента

Гафний и из-за лантаноидного сжатия имеют почти одинаковые размеры атомов и -ионов, поэтому свойства элементов так близки, как ни в одной другой подгруппе. Наиболее важное их отличие от титана состоит в том, что низкие степени окисления встречаются крайне редко. Достоверно известно лишь несколько соединений, где Hf не проявляют высшей степени окисления. Для таких соединений характерны сильные восстановительные свойства. В водных растворах солей

гидролиз протекает в меньшей степени, чем у солен титана, однако существование свободных ионов Hf ⁴ ⁺ представляется маловероятным. Координационное число в комплексах этого элемента выше, чем у титана, и равно 7 и даже 8.

Свойства простых веществ и соединений

В твердом состоянии гафний - блестящий серебристо-белый металл. Относятся гафний к тяжелым металлам, он тугоплавок и в чистом состоянии обладает хорошими металлическими свойствами. При загрязнении кислородом, азотом, углеродом, бромом, водородом и т. д. теряют пластичность и становятся твердыми и хрупкими. Гафний образует с железом, хромом, марганцем, ванадием, алюминием, медью, углеродом, серой, азотом, фосфором, бором и т. д. В порошкообразном состоянии он способен поглощать большие количества водорода. С химической точки зрения подгруппы титана неактивны, устойчивы на воздухе или в воде при нормальных условиях. При повышенных температурах становятся очень активными по отношению к кислороду, галогенам, сере, азоту, углероду, бору и т. д. Оксиды трудно растворимы, и основные свойства их гидратов усиливаются у Hf .

Элемент не встречается в природе в свободном состоянии и не может быть получен электролизом водных растворов. Если оксид титана (IV) обладает кислыми свойствами, оксиды гафния-слабоосновными. Гидроксиды элементов Hf(OH) 4 (или в виде гидратированных диоксидов МеO 2 -2Н 2 O) образуются при обработке растворов соответствующих тетрагалогенидов HfCl 4 и щелочами. Они представляют собой студенистые белые осадки, плохо растворимые в воде; обнаруживают очень слабо выраженные кислые свойства, вследствие чего они почти не реагируют со щелочами. Основной характер соединении усиливается от циркония к гафнию, у которого появляется, например, способность растворяться в сильных кислотах.

Получение и использование гафния

Гафний обнаруживается во всех циркониевых минералах, где его содержание не превышает нескольких процентов от содержания циркония. Разделить эти элементы труднее, чем лантаноиды. Это удается лишь при помощи ионного обмена и экстракции. Чаше всего его используют как материал для конструкции ядерных реакторов.

Просмотров