Doğal logaritma ve logaritmanın a tabanına göre türevi.

Doğal logaritmanın ve a tabanına göre logaritmanın türevinin formüllerinin ispatı ve türetilmesi. ln 2x, ln 3x ve ln nx'in türevlerinin hesaplanmasına örnekler. Matematiksel tümevarım yöntemini kullanarak n'inci dereceden logaritmanın türevinin formülünün kanıtı.

Doğal logaritmanın türevleri ve logaritmanın bir tabanına göre formüllerinin türetilmesi

X'in doğal logaritmasının türevi, birin x'e bölünmesine eşittir:
(1) (ln x)' =.

Logaritmanın a tabanına göre türevi, birin x değişkenine bölünmesiyle a'nın doğal logaritmasının çarpımına eşittir:
(2) (log a x)' =.

Kanıt

Biraz olsun pozitif sayı, bire eşit değil. Tabanın logaritması olan x değişkenine bağlı bir fonksiyon düşünün:
.
Bu fonksiyon adresinde tanımlanmıştır. x değişkenine göre türevini bulalım. Tanım gereği türev aşağıdaki limittir:
(3) .

Bu ifadeyi bilinen matematiksel özelliklere ve kurallara indirgeyecek şekilde dönüştürelim. Bunu yapmak için aşağıdaki gerçekleri bilmemiz gerekir:
A) Logaritmanın özellikleri. Aşağıdaki formüllere ihtiyacımız olacak:
(4) ;
(5) ;
(6) ;
B) Logaritmanın sürekliliği ve sürekli bir fonksiyon için limitlerin özelliği:
(7) .
Burada limiti olan bir fonksiyon var ve bu limit pozitif.
İÇİNDE)İkinci dikkat çekici sınırın anlamı:
(8) .

Bu gerçekleri sınırlarımıza uygulayalım. İlk önce cebirsel ifadeyi dönüştürüyoruz
.
Bunu yapmak için (4) ve (5) özelliklerini uyguluyoruz.

.

(7) özelliğini ve ikincisini kullanalım dikkate değer sınır (8):
.

Ve son olarak (6) özelliğini uyguluyoruz:
.
Tabana göre logaritma e isminde doğal logaritma. Aşağıdaki şekilde belirlenmiştir:
.
Daha sonra ;
.

Böylece logaritmanın türevi için formül (2)'yi elde ettik.

Doğal logaritmanın türevi

Bir kez daha logaritmanın a tabanına göre türevinin formülünü yazıyoruz:
.
Bu formül doğal logaritmanın en basit biçimine sahiptir; bunun için , . Daha sonra
(1) .

Bu basitlik nedeniyle doğal logaritma, matematiksel analizde ve matematiğin diferansiyel hesapla ilgili diğer dallarında çok yaygın olarak kullanılır. Logaritmik fonksiyonlar diğer bazlarla birlikte özellik (6) kullanılarak doğal logaritma yoluyla ifade edilebilir:
.

Diferansiyel işaretinden sabiti çıkarırsanız, logaritmanın tabana göre türevi formül (1)'den bulunabilir:
.

Logaritmanın türevini kanıtlamanın diğer yolları

Burada üstel sayının türevinin formülünü bildiğimizi varsayıyoruz:
(9) .
Daha sonra logaritmanın üstel sayının ters fonksiyonu olduğu göz önüne alındığında, doğal logaritmanın türevinin formülünü türetebiliriz.

Doğal logaritmanın türevinin formülünü kanıtlayalım, ters fonksiyonun türevi formülünün uygulanması:
.
Bizim durumumuzda. Ters fonksiyon doğal logaritmanın üstel değeri:
.
Türevi formül (9) ile belirlenir. Değişkenler herhangi bir harfle belirtilebilir. Formül (9)'da x değişkenini y ile değiştirin:
.
O zamandan beri
.
Daha sonra
.
Formül kanıtlanmıştır.


Şimdi doğal logaritmanın türevinin formülünü kullanarak kanıtlıyoruz: farklılaşma kuralları karmaşık fonksiyon . ve fonksiyonları birbirinin tersi olduğuna göre,
.
Bu denklemin x değişkenine göre türevini alalım:
(10) .
x'in türevi bire eşittir:
.
Karmaşık fonksiyonların türev alma kuralını uyguluyoruz:
.
Burada . (10)'da yerine koyalım:
.
Buradan
.

Örnek

Türevlerini bulun 2x'te, 3x'te Ve lnx.

Çözüm

Orijinal işlevler benzer bir biçime sahiptir. Bu nedenle fonksiyonun türevini bulacağız y = log nx. Daha sonra n = 2 ve n = 3'ü yerine koyarız. Ve böylece türevleri için formüller elde ederiz. 2x'te Ve 3x'te .

Yani fonksiyonun türevini arıyoruz
y = log nx .
Bu fonksiyonu iki fonksiyondan oluşan karmaşık bir fonksiyon olarak düşünelim:
1) Değişkene bağlı işlevler: ;
2) Değişkene bağlı işlevler: .
Daha sonra orijinal fonksiyon aşağıdaki fonksiyonlardan oluşur:
.

Fonksiyonun x değişkenine göre türevini bulalım:
.
Fonksiyonun değişkene göre türevini bulalım:
.
Karmaşık bir fonksiyonun türevinin formülünü uyguluyoruz.
.
İşte ayarladık.

Böylece şunu bulduk:
(11) .
Türevin n'ye bağlı olmadığını görüyoruz. Orijinal fonksiyonu çarpımın logaritması formülünü kullanarak dönüştürürsek bu sonuç oldukça doğaldır:
.
- bu bir sabittir. Türevi sıfırdır. O zaman toplamın farklılaşma kuralına göre şunu elde ederiz:
.

Cevap

; ; .

Modül x logaritmasının türevi

Bir başkasının türevini bulalım önemli işlev- x modülünün doğal logaritması:
(12) .

Olayı ele alalım. Daha sonra fonksiyon şöyle görünür:
.
Türevi formül (1) ile belirlenir:
.

Şimdi olayı ele alalım. Daha sonra fonksiyon şöyle görünür:
,
Nerede .
Ancak yukarıdaki örnekte bu fonksiyonun türevini de bulduk. N'ye bağlı değildir ve eşittir
.
Daha sonra
.

Bu iki durumu tek bir formülde birleştiriyoruz:
.

Buna göre logaritmanın a tabanına göre elde edilmesi için:
.

Doğal logaritmanın daha yüksek mertebeden türevleri

İşlevi düşünün
.
Birinci dereceden türevini bulduk:
(13) .

İkinci dereceden türevi bulalım:
.
Üçüncü dereceden türevi bulalım:
.
Dördüncü dereceden türevi bulalım:
.

N'inci dereceden türevin şu şekilde olduğunu fark edebilirsiniz:
(14) .
Bunu matematiksel tümevarımla kanıtlayalım.

Kanıt

n = 1 değerini formül (14)'te yerine koyalım:
.
'den beri, o zaman n = 1 , formül (14) geçerlidir.

Formül (14)'ün n = k için karşılandığını varsayalım. Bunun, formülün n = k için geçerli olduğunu ima ettiğini kanıtlayalım. + 1 .

Aslında, n = k için elimizde:
.
x değişkenine göre türev alın:

.
Böylece şunu elde ettik:
.
Bu formül n = k + için formül (14) ile örtüşmektedir. 1 . Dolayısıyla formül (14)'ün n = k için geçerli olduğu varsayımından, formül (14)'ün n = k + için geçerli olduğu sonucu çıkar. 1 .

Bu nedenle, n'inci dereceden türev için formül (14) herhangi bir n için geçerlidir.

Bir tabana göre daha yüksek logaritmanın türevleri

Bir logaritmanın a tabanına göre n'inci dereceden türevini bulmak için, bunu doğal logaritma cinsinden ifade etmeniz gerekir:
.
Formül (14)'ü uygulayarak n'inci türevi buluruz:
.

Tanım.\(y = f(x)\) fonksiyonunun \(x_0\) noktasını içeren belirli bir aralıkta tanımlandığını varsayalım. Argümana bu aralığı terk etmeyecek şekilde \(\Delta x \) bir artış verelim. \(\Delta y \) fonksiyonunun karşılık gelen artışını bulalım (\(x_0 \) noktasından \(x_0 + \Delta x \) noktasına giderken) ve \(\frac(\Delta) ilişkisini oluşturalım y)(\Delta x) \). Bu oranın \(\Delta x \rightarrow 0\'da) bir sınırı varsa, belirtilen sınıra denir. bir fonksiyonun türevi\(y=f(x) \) \(x_0 \) noktasındadır ve \(f"(x_0) \)'yi gösterir.

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Y sembolü genellikle türevi belirtmek için kullanılır. y" = f(x)'in yeni bir fonksiyon olduğuna, ancak yukarıdaki limitin mevcut olduğu tüm x noktalarında tanımlanan y = f(x) fonksiyonuyla doğal olarak ilişkili olduğuna dikkat edin. Bu fonksiyon şu şekilde çağrılır: y = f(x) fonksiyonunun türevi.

Türevin geometrik anlamıŞöyleki. y = f(x) fonksiyonunun grafiğine apsis x=a olan ve y eksenine paralel olmayan bir noktada bir teğet çizmek mümkünse f(a) teğetin eğimini ifade eder :
\(k = f"(a)\)

\(k = tg(a) \) olduğundan, \(f"(a) = tan(a) \) eşitliği doğrudur.

Şimdi türevin tanımını yaklaşık eşitlikler açısından yorumlayalım. \(y = f(x)\) fonksiyonunun belirli bir \(x\) noktasında türevi olsun:
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Bu, x noktası yakınında yaklaşık eşitliğin \(\frac(\Delta y)(\Delta x) \approx f"(x)\), yani \(\Delta y \approx f"(x) \cdot\ olduğu anlamına gelir. Delta x\). Ortaya çıkan yaklaşık eşitliğin anlamlı anlamı şu şekildedir: Fonksiyonun artışı argümanın artışıyla “neredeyse orantılıdır” ve orantı katsayısı da türevin değeridir. verilen nokta X. Örneğin, \(y = x^2\) fonksiyonu için yaklaşık eşitlik \(\Delta y \approx 2x \cdot \Delta x \) geçerlidir. Bir türevin tanımını dikkatlice analiz edersek, onu bulmak için bir algoritma içerdiğini görürüz.

Formüle edelim.

y = f(x) fonksiyonunun türevi nasıl bulunur?

1. \(x\) değerini sabitleyin, \(f(x)\)'i bulun
2. \(x\) argümanına bir artış \(\Delta x\) verin, yeni bir \(x+ \Delta x \) noktasına gidin, \(f(x+ \Delta x) \)'yi bulun
3. Fonksiyonun artışını bulun: \(\Delta y = f(x + \Delta x) - f(x) \)
4. \(\frac(\Delta y)(\Delta x) \) ilişkisini oluşturun
5. $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$'ı hesaplayın
Bu limit fonksiyonun x noktasındaki türevidir.

Bir y = f(x) fonksiyonunun x noktasında türevi varsa, bu fonksiyona x noktasında türevlenebilir denir. y = f(x) fonksiyonunun türevini bulma prosedürüne denir farklılaşma fonksiyonlar y = f(x).

Şu soruyu tartışalım: Bir fonksiyonun bir noktadaki sürekliliği ve türevlenebilirliği birbiriyle nasıl ilişkilidir?

y = f(x) fonksiyonunun x noktasında türevi olsun. Daha sonra fonksiyonun grafiğine M(x; f(x)) noktasında bir teğet çizilebilir ve hatırlayın, teğetin açısal katsayısı f "(x)'e eşittir. Böyle bir grafik "kırılamaz" M noktasında, yani fonksiyon x noktasında sürekli olmalıdır.

Bunlar “uygulamalı” argümanlardı. Daha kesin bir gerekçe sunalım. Eğer y = f(x) fonksiyonu x noktasında türevlenebilirse, o zaman yaklaşık eşitlik \(\Delta y \approx f"(x) \cdot \Delta x \) geçerlidir. Bu eşitlikte ise \(\Delta x \) sıfıra yönelirse \(\Delta y \) sıfıra yönelecektir ve bu, fonksiyonun bir noktadaki sürekliliğinin koşuludur.

Bu yüzden, Bir fonksiyon x noktasında türevlenebilirse o noktada süreklidir.

Tersi ifade doğru değildir. Örneğin: fonksiyon y = |x| her yerde, özellikle x = 0 noktasında süreklidir, ancak fonksiyonun grafiğine “birleşim noktasında” (0; 0) teğet mevcut değildir. Bir fonksiyonun grafiğine bir noktada teğet çizilemiyorsa o noktada türev mevcut değildir.

Bir örnek daha. \(y=\sqrt(x)\) fonksiyonu, x = 0 noktası da dahil olmak üzere tüm sayı doğrusu üzerinde süreklidir. Ve fonksiyonun grafiğine teğet, x = 0 noktası da dahil olmak üzere herhangi bir noktada mevcuttur. Ancak bu noktada teğet y eksenine denk gelir, yani apsis eksenine diktir, denklemi x = 0 şeklindedir. Eğim katsayısı böyle bir çizgi yok, bu da \(f"(0) \)'nin de mevcut olmadığı anlamına geliyor

Böylece bir fonksiyonun yeni bir özelliği olan türevlenebilirlik ile tanıştık. Bir fonksiyonun grafiğinden onun türevlenebilir olduğu sonucuna nasıl varılabilir?

Bunun cevabı aslında yukarıda verilmiştir. Bir noktada apsis eksenine dik olmayan bir fonksiyonun grafiğine teğet çizmek mümkünse, o zaman bu noktada fonksiyon türevlenebilirdir. Bir fonksiyonun grafiğinin bir noktada teğeti yoksa veya apsis eksenine dikse, bu noktada fonksiyon türevlenebilir değildir.

Farklılaşma kuralları

Türev bulma işlemine denir farklılaşma. Bu işlemi gerçekleştirirken çoğu zaman bölümler, toplamlar, fonksiyonların çarpımları ve ayrıca "fonksiyonların fonksiyonları" yani karmaşık fonksiyonlarla çalışmak zorunda kalırsınız. Türevin tanımından yola çıkarak bu işi kolaylaştıracak türev kurallarını türetebiliriz. Eğer C sabit bir sayıysa ve f=f(x), g=g(x) bazı türevlenebilir fonksiyonlarsa, aşağıdakiler doğrudur farklılaşma kuralları:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Karmaşık bir fonksiyonun türevi:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Bazı fonksiyonların türevleri tablosu

$$ \left(\frac(1)(x) \sağ) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

Türevi bulma işlemine farklılaşma denir.

Türevi, argümanın artışına oranının limiti olarak tanımlayarak en basit (ve çok basit olmayan) fonksiyonların türevlerini bulma problemlerinin çözülmesi sonucunda, bir türev tablosu ortaya çıktı ve tam olarak belirli kurallar farklılaşma. Türev bulma alanında ilk çalışmalar yapanlar Isaac Newton (1643-1727) ve Gottfried Wilhelm Leibniz (1646-1716) olmuştur.

Bu nedenle günümüzde herhangi bir fonksiyonun türevini bulmak için yukarıda belirtilen fonksiyonun artımının argümanın artımına oranının limitini hesaplamanıza gerek yoktur, yalnızca tabloyu kullanmanız gerekir. türevler ve türev alma kuralları. Aşağıdaki algoritma türevi bulmak için uygundur.

Türevi bulmak için, asal işaretin altında bir ifadeye ihtiyacınız var basit işlevleri bileşenlere ayırın ve hangi eylemlerin gerçekleştirileceğini belirleyin (çarpım, toplam, bölüm) bu işlevler birbiriyle ilişkilidir. Daha sonra, temel fonksiyonların türevlerini türev tablosunda ve çarpım, toplam ve bölüm türevlerinin formüllerini türev kurallarında buluyoruz. Türev tablosu ve türev kuralları ilk iki örnekten sonra verilmiştir.

Örnek 1. Bir fonksiyonun türevini bulun

Çözüm. Türev alma kurallarından, bir fonksiyon toplamının türevinin, fonksiyonların türevlerinin toplamı olduğunu öğreniyoruz;

Türev tablosundan "x" türevinin bire, sinüs türevinin kosinüse eşit olduğunu öğreniyoruz. Bu değerleri türevlerin toplamına koyarız ve problemin koşulunun gerektirdiği türevi buluruz:

Örnek 2. Bir fonksiyonun türevini bulun

Çözüm. İkinci terimin sabit bir faktöre sahip olduğu bir toplamın türevi olarak türev alıyoruz; türevin işaretinden çıkarılabilir:

Eğer hala bir şeyin nereden geldiğine dair sorular ortaya çıkıyorsa, bunlar genellikle türev tablosuna ve türev almanın en basit kurallarına aşina olduktan sonra açıklığa kavuşturulur. Şu anda onlara doğru ilerliyoruz.

Basit fonksiyonların türevleri tablosu

1. Bir sabitin (sayı) türevi. İşlev ifadesindeki herhangi bir sayı (1, 2, 5, 200...). Her zaman sıfıra eşittir. Bunu hatırlamak çok önemlidir, çünkü çok sık ihtiyaç duyulur.
2. Bağımsız değişkenin türevi. Çoğu zaman "X". Her zaman bire eşittir. Bunu uzun süre hatırlamak da önemlidir
3. Derecenin türevi. Problem çözerken karekök olmayanları kuvvetlere dönüştürmeniz gerekir.
4. Bir değişkenin -1 kuvvetine göre türevi
5. Türev kare kök
6. Sinüs türevi
7. Kosinüs Türevi
8. Teğetin türevi
9. Kotanjantın Türevi
10. Arsinüsün türevi
11. Ark kosinüsün türevi
12. Arktanjantın türevi
13. Ark kotanjantının türevi
14. Doğal logaritmanın türevi
15. Logaritmik fonksiyonun türevi
16. Üssün türevi
17. Üstel bir fonksiyonun türevi

Farklılaşma kuralları

1. Bir toplamın veya farkın türevi
2. Ürünün türevi
2a. Bir ifadenin sabit bir faktörle çarpılmasının türevi
3. Bölümün türevi
4. Karmaşık bir fonksiyonun türevi

Kural 1.Eğer işlevler

Bir noktada türevlenebilirse fonksiyonlar aynı noktada türevlenebilirdir

Ve

onlar. fonksiyonların cebirsel toplamının türevi şuna eşittir: cebirsel toplam bu fonksiyonların türevleri.

Sonuçlar. İki türevlenebilir fonksiyonun farkı sabit bir terim ise türevleri eşittir yani

Kural 2.Eğer işlevler

Bir noktada türevlenebilirse çarpımları aynı noktada türevlenebilirdir

Ve

onlar. İki fonksiyonun çarpımının türevi, bu fonksiyonların her birinin çarpımları ile diğerinin türevinin toplamına eşittir.

Sonuç 1. Sabit faktör türevin işaretinden çıkarılabilir:

Sonuç 2. Çeşitli türevlenebilir fonksiyonların çarpımının türevi, her faktörün ve diğerlerinin türevinin çarpımlarının toplamına eşittir.

Örneğin üç çarpan için:

Kural 3.Eğer işlevler

bir noktada farklılaşabilir Ve , o zaman bu noktada onların bölümü de türevlenebiliru/v ve

onlar. iki fonksiyonun bölümünün türevi, pay, paydanın çarpımları ile payın türevi ile pay ve paydanın türevi arasındaki fark olan bir kesire eşittir ve payda, karesidir. eski pay.

Diğer sayfalardaki şeyleri nerede arayabilirim?

Gerçek problemlerde bir çarpımın ve bölümün türevini bulurken her zaman birkaç türev alma kuralını aynı anda uygulamak gerekir, bu nedenle makalede bu türevlerle ilgili daha fazla örnek vardır."Çarpının türevi ve fonksiyonların bölümü".

Yorum. Bir sabiti (yani bir sayıyı) toplamdaki bir terim ve sabit bir faktör olarak karıştırmamalısınız! Bir terim olması durumunda türevi sıfıra eşit olur ve sabit bir faktör olması durumunda türevlerin işareti dışına çıkarılır. Bu, meydana gelen tipik bir hatadır. İlk aşama Türevleri inceliyorlar, ancak birkaç bir ve iki parçalı örnekleri çözdükçe, ortalama bir öğrenci artık bu hatayı yapmıyor.

Ve eğer bir ürünü veya bölümü farklılaştırırken bir teriminiz varsa sen"v, hangisinde sen- bir sayı, örneğin 2 veya 5, yani bir sabit, o zaman bu sayının türevi sıfıra eşit olacaktır ve dolayısıyla tüm terim sıfıra eşit olacaktır (bu durum örnek 10'da tartışılmıştır).

Diğer yaygın hata - mekanik çözüm basit bir fonksiyonun türevi olarak karmaşık bir fonksiyonun türevi. Bu yüzden karmaşık bir fonksiyonun türevi ayrı bir makale ayrılmıştır. Ama önce basit fonksiyonların türevlerini bulmayı öğreneceğiz.

Yol boyunca ifadeleri dönüştürmeden yapamazsınız. Bunu yapmak için kılavuzu yeni pencerelerde açmanız gerekebilir. Güçleri ve kökleri olan eylemler Ve Kesirlerle işlemler .

Kesirlerin kuvvetleri ve kökleri olan türevlerine çözüm arıyorsanız, yani fonksiyon şöyle göründüğünde , ardından “Küsleri ve kökleri olan kesirlerin toplamlarının türevi” dersini takip edin.

gibi bir göreviniz varsa , daha sonra “Basit trigonometrik fonksiyonların türevleri” dersini alacaksınız.

Adım adım örnekler - türev nasıl bulunur

Örnek 3. Bir fonksiyonun türevini bulun

Çözüm. Fonksiyon ifadesinin bölümlerini tanımlarız: ifadenin tamamı bir çarpımı temsil eder ve faktörleri toplamlardır; ikincisinde terimlerden biri sabit bir faktör içerir. Çarpım farklılaşması kuralını uyguluyoruz: iki fonksiyonun çarpımının türevi, bu fonksiyonların her birinin çarpımlarının diğerinin türevine göre toplamına eşittir:

Daha sonra, toplamın türev alma kuralını uyguluyoruz: Cebirsel fonksiyonlar toplamının türevi, bu fonksiyonların türevlerinin cebirsel toplamına eşittir. Bizim durumumuzda, her toplamın ikinci teriminde bir eksi işareti vardır. Her toplamda hem türevi bire eşit olan bağımsız bir değişken hem de türevi sıfıra eşit olan bir sabit (sayı) görüyoruz. Yani “X” bire, eksi 5 ise sıfıra dönüşüyor. İkinci ifadede "x" 2 ile çarpıldığından ikiyi "x"in türeviyle aynı birim ile çarpıyoruz. Aşağıdaki türev değerlerini elde ederiz:

Bulunan türevleri çarpımların toplamına koyarız ve problemin koşulunun gerektirdiği tüm fonksiyonun türevini elde ederiz:

Örnek 4. Bir fonksiyonun türevini bulun

Çözüm. Bölümün türevini bulmamız gerekiyor. Bölümün türevini almak için formülü uyguluyoruz: iki fonksiyonun bölümünün türevi, payı paydanın çarpımları ile payın türevi ile pay ve payın türevi arasındaki fark olan bir kesire eşittir. payda ve payda önceki payın karesidir. Şunu elde ederiz:

Örnek 2'de paydaki faktörlerin türevini zaten bulmuştuk. Mevcut örnekte payda ikinci faktör olan çarpımın eksi işaretiyle alındığını da unutmayalım:

Bir fonksiyonun türevini bulmanız gereken, sürekli bir kök ve kuvvet yığınının bulunduğu sorunlara çözüm arıyorsanız, örneğin, , o zaman sınıfa hoş geldiniz "Kuvvetleri ve kökleri olan kesirlerin toplamlarının türevi" .

Sinüs, kosinüs, teğet ve diğerlerinin türevleri hakkında daha fazla bilgi edinmek istiyorsanız trigonometrik fonksiyonlar, yani fonksiyon şöyle göründüğünde o zaman sana bir ders "Basit trigonometrik fonksiyonların türevleri" .

Örnek 5. Bir fonksiyonun türevini bulun

Çözüm. Bu fonksiyonda, türev tablosunda türevine aşina olduğumuz, faktörlerinden biri bağımsız değişkenin karekökü olan bir çarpım görüyoruz. Çarpımı ve karekök türevinin tablo değerini farklılaştırma kuralını kullanarak şunu elde ederiz:

Örnek 6. Bir fonksiyonun türevini bulun

Çözüm. Bu fonksiyonda, payı bağımsız değişkenin karekökü olan bir bölüm görüyoruz. Örnek 4'te tekrarladığımız ve uyguladığımız bölümlerin farklılaşma kuralını ve karekök türevinin tablolaştırılmış değerini kullanarak şunu elde ederiz:

Paydaki kesirden kurtulmak için pay ve paydayı ile çarpın.

Görüntüleme