Üsleri aynı fakat tabanları farklı olan sayılar. Kuvvetler nasıl çarpılır, kuvvetleri farklı üslerle çarpma

Konuyla ilgili ders: "Aynı ve farklı üslerle çarpma ve kuvvetler bölümü kuralları. Örnekler"

Ek materyaller
Değerli kullanıcılarımız yorumlarınızı, yorumlarınızı, dileklerinizi bırakmayı unutmayın. Tüm materyaller antivirüs programı ile kontrol edilmiştir.

7. sınıf için Integral çevrimiçi mağazasında öğretim yardımcıları ve simülatörler
Yu.N. ders kitabı kılavuzu. A.G.'nin ders kitabı için Makarycheva El Kitabı. Mordkoviç

Dersin amacı: Sayıların kuvvetleriyle işlem yapmayı öğrenmek.

Öncelikle "sayıların gücü" kavramını hatırlayalım. $\underbrace( a * a * \ldots * a )_(n)$ biçimindeki bir ifade, $a^n$ olarak temsil edilebilir.

Bunun tersi de doğrudur: $a^n= \underbrace( a * a * \ldots * a )_(n)$.

Bu eşitliğe “derecenin çarpım olarak kaydedilmesi” denir. Güçleri nasıl çoğaltacağımızı ve böleceğimizi belirlememize yardımcı olacak.
Hatırlamak:
A– derecenin temeli.
N– üs.
Eğer n=1, bu sayı anlamına gelir A bir kez aldı ve buna göre: $a^n= 1$.
Eğer n= 0, sonra $a^0= 1$.

Çarpma ve kuvvetler ayrılığı kurallarını öğrendiğimizde bunun neden olduğunu anlayabiliriz.

Çarpma kuralları

a) Tabanı aynı olan kuvvetler çarpılırsa.
$a^n * a^m$ elde etmek için dereceleri çarpım olarak yazarız: $\underbrace( a * a * \ldots * a )_(n) * \underbrace( a * a * \ldots * a ) _(m)$.
Şekil, sayıyı göstermektedir. A almış n+mçarpı, o zaman $a^n * a^m = a^(n + m)$.

Örnek.
$2^3 * 2^2 = 2^5 = 32$.

Bu özellik, bir sayıyı daha yüksek bir kuvvete yükseltirken işi basitleştirmek için kullanılmaya uygundur.
Örnek.
$2^7= 2^3 * 2^4 = 8 * 16 = 128$.

b) Tabanları farklı ancak üsleri aynı olan dereceler çarpılır.
$a^n * b^n$ elde etmek için dereceleri çarpım olarak yazarız: $\underbrace( a * a * \ldots * a )_(n) * \underbrace( b * b * \ldots * b ) _(m)$.
Faktörleri değiştirir ve ortaya çıkan çiftleri sayarsak şunu elde ederiz: $\underbrace( (a * b) * (a * b) * \ldots * (a * b) )_(n)$.

Yani $a^n * b^n= (a * b)^n$.

Örnek.
$3^2 * 2^2 = (3 * 2)^2 = 6^2= 36$.

Bölme kuralları

a) Derecenin esası aynı, göstergeleri farklıdır.
Bir kuvveti daha küçük bir üsle bölerek, daha büyük bir üsle bölmeyi düşünün.

Yani, ihtiyacimiz var $\frac(a^n)(a^m)$, Nerede n>m.

Dereceleri kesirli olarak yazalım:

$\frac(\underbrace( a * a * \ldots * a )_(n))(\underbrace( a * a * \ldots * a )_(m))$.
Kolaylık sağlamak için bölümü basit bir kesir olarak yazıyoruz.

Şimdi kesri azaltalım.


Görünüşe göre: $\underbrace( a * a * \ldots * a )_(n-m)= a^(n-m)$.
Araç, $\frac(a^n)(a^m)=a^(n-m)$.

Bu özellik, bir sayının sıfır üssüne yükseltilmesiyle durumu açıklamaya yardımcı olacaktır. Diyelim ki n=m, sonra $a^0= a^(n-n)=\frac(a^n)(a^n) =1$.

Örnekler.
$\frac(3^3)(3^2)=3^(3-2)=3^1=3$.

$\frac(2^2)(2^2)=2^(2-2)=2^0=1$.

b) Derecenin esasları farklı, göstergeleri aynıdır.
Diyelim ki $\frac(a^n)( b^n)$ gerekli. Sayıların kuvvetlerini kesir olarak yazalım:

$\frac(\underbrace( a * a * \ldots * a )_(n))(\underbrace( b * b * \ldots * b )_(n))$.
Kolaylık sağlamak için hayal edelim.

Kesirlerin özelliğini kullanarak büyük kesri küçüklerin çarpımına böleriz, elde ederiz.
$\underbrace( \frac(a)(b) * \frac(a)(b) * \ldots * \frac(a)(b) )_(n)$.
Buna göre: $\frac(a^n)( b^n)=(\frac(a)(b))^n$.

Örnek.
$\frac(4^3)( 2^3)= (\frac(4)(2))^3=2^3=8$.

Belirli bir sayıyı bir kuvvete yükseltmeniz gerekiyorsa kullanabilirsiniz. Şimdi daha yakından bakacağız derecelerin özellikleri.

Üstel sayılar açık harika fırsatlarçarpma işlemini toplama işlemine dönüştürmemize olanak tanırlar ve toplama işlemi çarpma işleminden çok daha kolaydır.

Mesela 16'yı 64 ile çarpmamız gerekiyor. Bu iki sayının çarpımı 1024. Ama 16 4x4, 64 ise 4x4x4. Yani 16'ya 64 = 4x4x4x4x4, bu da 1024'e eşittir.

16 sayısını 2x2x2x2, 64 sayısını da 2x2x2x2x2x2 olarak gösterebiliriz ve çarparsak yine 1024 elde ederiz.

Şimdi kuralı kullanalım. 16=4 2 veya 2 4, 64=4 3 veya 2 6, aynı zamanda 1024=6 4 =4 5 veya 2 10.

Dolayısıyla problemimiz farklı şekilde yazılabilir: 4 2 x4 3 =4 5 veya 2 4 x2 6 =2 10 ve her seferinde 1024 elde ederiz.

Bir diziyi çözebiliriz benzer örnekler ve sayıların kuvvetleriyle çarpmanın şuna indirgendiğini göreceğiz üsler ekleme veya faktörlerin tabanlarının eşit olması şartıyla elbette üstel.

Böylece çarpma yapmadan hemen 2 4 x2 2 x2 14 = 2 20 diyebiliriz.

Bu kural sayıların üsleriyle bölünmesinde de geçerlidir, ancak bu durumda bölenin üssü bölenin üssünden çıkarılır. Böylece, 2 5:2 3 =2 2, normal sayılarda 32:8 = 4'e, yani 2 2'ye eşittir. Özetleyelim:

a m x an n =a m+n, a m: an n =a m-n, burada m ve n tamsayılardır.

İlk bakışta bu gibi görünebilir sayıların kuvvetleriyle çarpma ve bölme pek kullanışlı değil çünkü ilk önce sayıyı üstel biçimde temsil etmeniz gerekiyor. 8 ve 16 sayısını yani 2 3 ve 2 4 sayısını bu formda temsil etmek zor değil ama 7 ve 17 sayılarıyla bunu nasıl yapacağız? Veya bir sayının üstel biçimde gösterilebildiği ancak sayıların üstel ifadelerinin tabanlarının çok farklı olduğu durumlarda ne yapılması gerektiği. Örneğin, 8x9, 2 3 x 3 2'dir, bu durumda üsleri toplayamayız. Cevap ne 2 5, ne 3 5, ne de cevap bu iki sayı arasındaki aralıkta yer alıyor.

O halde bu yöntemle uğraşmaya değer mi? Kesinlikle buna değer. Özellikle karmaşık ve zaman alan hesaplamalarda çok büyük faydalar sağlar.

Son video dersimizde belli bir bazın derecesinin, üssün kendi başına çarpımını temsil eden, üste eşit miktarda alınan bir ifade olduğunu öğrendik. Şimdi güçlerin en önemli özelliklerinden ve işleyişinden bazılarını inceleyelim.

Örneğin iki farklı kuvveti aynı tabanla çarpalım:

Bu çalışmayı bütünüyle sunalım:

(2) 3 * (2) 2 = (2)*(2)*(2)*(2)*(2) = 32

Bu ifadenin değerini hesapladıktan sonra 32 sayısını elde ederiz. Öte yandan aynı örnekten de anlaşılacağı gibi 32, aynı bazın (iki) 5 kez alınan çarpımı olarak da gösterilebilir. Ve gerçekten de sayarsanız, o zaman:

Böylece, güvenle şu sonuca varabiliriz:

(2) 3 * (2) 2 = (2) 5

Bu kural her türlü gösterge ve nedenlere bağlı olarak başarılı bir şekilde çalışır. Güç çarpımının bu özelliği, bir üründeki dönüşümler sırasında ifadelerin anlamının korunması kuralından kaynaklanır. Herhangi bir a tabanı için, (a)x ve (a)y olmak üzere iki ifadenin çarpımı a(x + y)'ye eşittir. Yani aynı tabana sahip herhangi bir ifade üretildiğinde ortaya çıkan tek terimli, birinci ve ikinci ifadenin derecelerinin toplanmasıyla oluşan bir toplam dereceye sahiptir.

Sunulan kural, birkaç ifadeyi çarparken de harika çalışıyor. Temel koşul herkesin aynı temellere sahip olmasıdır. Örneğin:

(2) 1 * (2) 3 * (2) 4 = (2) 8

Bir ifadenin iki unsurunun dayanakları farklı ise derece eklemek, hatta güce dayalı ortak eylem gerçekleştirmek mümkün değildir.
Videomuzun gösterdiği gibi, çarpma ve bölme işlemlerinin benzerliğinden dolayı, bir çarpıma kuvvet ekleme kuralları, bölme işlemine mükemmel bir şekilde aktarılmıştır. Bu örneği düşünün:

İfadenin terim terim dönüşümünü gerçekleştirelim. tam görüntü ve temettü ve bölendeki aynı unsurları azaltın:

(2)*(2)*(2)*(2)*(2)*(2) / (2)*(2)*(2)*(2) = (2)(2) = (2) 2 = 4

Bu örneğin sonucu o kadar da ilginç değil, çünkü zaten çözme sürecinde ifadenin değerinin ikinin karesine eşit olduğu açıktır. Ve ikinci ifadenin derecesinin birincinin derecesinden çıkarılmasıyla elde edilen ikidir.

Bölümün derecesini belirlemek için bölenin derecesini bölenin derecesinden çıkarmak gerekir. Kural, tüm değerleri ve tüm doğal güçler için aynı temel ile çalışır. Soyutlama biçiminde elimizde:

(a) x / (a) y = (a) x - y

Özdeş tabanları derecelere bölme kuralından sıfır derecenin tanımı gelir. Açıkçası, aşağıdaki ifade şuna benzer:

(a) x / (a) x = (a) (x - x) = (a) 0

Öte yandan, bölmeyi daha görsel bir şekilde yaparsak şunu elde ederiz:

(a) 2 / (a) 2 = (a) (a) / (a) (a) = 1

Bir kesrin tüm görünür elemanlarını azaltırken her zaman 1/1 ifadesi, yani bir elde edilir. Bu nedenle, sıfırıncı kuvvete yükseltilmiş herhangi bir tabanın bire eşit olduğu genel olarak kabul edilir:

A'nın değeri ne olursa olsun.

Bununla birlikte, 0'ın (herhangi bir çarpma için hala 0 verir) bir şekilde bire eşit olması saçma olurdu, bu nedenle (0) 0 (sıfırın sıfır kuvveti) biçimindeki bir ifadenin bir anlamı yoktur ve () formülünü kullanmak anlamsız olacaktır. a) 0 = 1 bir koşul ekleyin: “a, 0'a eşit değilse.”

Alıştırmayı çözelim. İfadenin değerini bulalım:

(34) 7 * (34) 4 / (34) 11

Taban her yerde aynı ve 34'e eşit olduğundan, nihai değer dereceyle aynı tabana sahip olacaktır (yukarıdaki kurallara göre):

Başka bir deyişle:

(34) 7 * (34) 4 / (34) 11 = (34) 0 = 1

Cevap: İfade bire eşittir.

Üssü olan sayıların da diğer nicelikler gibi toplanabileceği açıktır. , işaretleriyle birlikte birbiri ardına ekleyerek.

Yani a 3 ile b 2'nin toplamı a 3 + b 2'dir.
a 3 - b n ve h 5 -d 4'ün toplamı a 3 - b n + h 5 - d 4'tür.

Oranlar aynı değişkenlerin eşit kuvvetleri eklenebilir veya çıkarılabilir.

Yani 2a 2 ve 3a 2'nin toplamı 5a 2'ye eşittir.

Ayrıca iki kare a, üç kare a veya beş kare a alırsanız da açıktır.

Ama dereceler çeşitli değişkenler Ve çeşitli dereceler özdeş değişkenler, işaretleriyle birlikte eklenerek oluşturulmalıdır.

Yani 2 ile 3'ün toplamı 2 + a 3'ün toplamıdır.

A'nın karesi ve a'nın küpünün, a'nın karesinin iki katına değil, a'nın küpünün iki katına eşit olduğu açıktır.

a 3 b n ile 3a 5 b 6'nın toplamı a 3 b n + 3a 5 b 6'dır.

Çıkarma kuvvetler toplama işlemiyle aynı şekilde gerçekleştirilir, ancak çıkanların işaretlerinin buna göre değiştirilmesi gerekir.

Veya:
2a 4 - (-6a 4) = 8a 4
3 sa 2 b 6 - 4 sa 2 b 6 = - sa 2 b 6
5(a - h) 6 - 2(a - h) 6 = 3(a - h) 6

Çarpan güçler

Üssü olan sayılar da diğer nicelikler gibi, aralarında çarpım işareti olsun ya da olmasın, arka arkaya yazılarak çarpılabilir.

Dolayısıyla a 3'ü b 2 ile çarpmanın sonucu a 3 b 2 veya aaabb olur.

Veya:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Son örnekteki sonuç aynı değişkenler eklenerek sıralanabilir.
İfade şu şekli alacaktır: a 5 b 5 y 3.

Birkaç sayıyı (değişkeni) üslerle karşılaştırarak, bunlardan herhangi ikisi çarpıldığında sonucun kuvveti eşit olan bir sayı (değişken) olduğunu görebiliriz. miktar terimlerin dereceleri.

Yani a 2 .a 3 = aa.aaa = aaaaaa = a 5 .

Burada 5, çarpma sonucunun kuvvetidir; terimlerin kuvvetlerinin toplamı olan 2 + 3'e eşittir.

Yani a n .a m = a m+n .

Bir n için a, n'nin kuvveti kadar bir faktör olarak alınır;

Ve a m, m derecesinin eşit olduğu sayıda faktör olarak alınır;

Bu yüzden, aynı tabanlara sahip kuvvetler, kuvvetlerin üsleri toplanarak çarpılabilir.

Yani a 2 .a 6 = a 2+6 = a 8 . Ve x 3 .x 2 .x = x 3+2+1 = x 6 .

Veya:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h - y) n ⋅ (b + h - y) = (b + h - y) n+1

(x 3 + x 2 y + xy 2 + y 3) ⋅ (x - y) ile çarpın.
Cevap: x 4 - y 4.
(x 3 + x - 5) ⋅ (2x 3 + x + 1) ile çarpın.

Bu kural üsleri eşit olan sayılar için de geçerlidir. olumsuz.

1. Yani a -2 .a -3 = a -5 . Bu (1/aa).(1/aaa) = 1/aaaaa şeklinde yazılabilir.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Eğer a + b a - b ile çarpılırsa sonuç a 2 - b 2 olacaktır: yani

İki sayının toplamı veya farkının çarpılmasının sonucu, karelerinin toplamına veya farkına eşittir.

Yükseltilmiş iki sayının toplamını ve farkını çarparsanız kare sonuç bu sayıların toplamına veya farkına eşit olacaktır. dördüncü derece.

Yani (a - y).(a + y) = a 2 - y 2.
(a 2 - y 2)⋅(a 2 + y 2) = a 4 - y 4.
(a 4 - y 4)⋅(a 4 + y 4) = a 8 - y 8.

Derecelerin bölünmesi

Üslü sayılar da diğer sayılar gibi paydan çıkarılarak veya kesirli hale getirilerek bölünebilir.

Böylece a 3 b 2 bölü b 2 eşittir a 3.

Veya:
$\frac(9a^3y^4)(-3a^3) = -3y^4$
$\frac(a^2b + 3a^2)(a^2) = \frac(a^2(b+3))(a^2) = b + 3$
$\frac(d\cdot (a - h + y)^3)((a - h + y)^3) = d$

5'i 3'e bölmek $\frac(a^5)(a^3)$ şeklinde görünür. Ama bu 2'ye eşit. Bir dizi sayı halinde
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
herhangi bir sayı diğerine bölünebilir ve üs şuna eşit olacaktır: fark Bölünebilen sayıların göstergeleri.

Tabanları aynı olan dereceleri bölerken üsleri çıkarılır..

Yani, y 3:y 2 = y 3-2 = y 1. Yani, $\frac(yyy)(yy) = y$.

Ve a n+1:a = a n+1-1 = a n . Yani, $\frac(aa^n)(a) = a^n$.

Veya:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

Kural aynı zamanda sayıları olan sayılar için de geçerlidir. olumsuz derece değerleri.
-5'i -3'e bölmenin sonucu -2'dir.
Ayrıca, $\frac(1)(aaaaa) : \frac(1)(aaa) = \frac(1)(aaaa).\frac(aaa)(1) = \frac(aaa)(aaaaa) = \frac (1)(aa)$.

h 2:h -1 = h 2+1 = h 3 veya $h^2:\frac(1)(h) = h^2.\frac(h)(1) = h^3$

Bu tür işlemler cebirde çok yaygın olarak kullanıldığı için çarpma ve kuvvetler bölüşümüne çok iyi hakim olmak gerekir.

Üsleri olan sayıları içeren kesirlerle örnek çözme örnekleri

1. Üsleri $\frac(5a^4)(3a^2)$ azaltın Cevap: $\frac(5a^2)(3)$.

2. Üsleri $\frac(6x^6)(3x^5)$ azaltın. Cevap: $\frac(2x)(1)$ veya 2x.

3. a 2 /a 3 ve a -3 /a -4 üslerini azaltın ve ortak bir paydaya getirin.
a 2 .a -4 birinci pay -2'dir.
a 3 .a -3, ikinci pay olan 0 = 1'dir.
a 3 .a -4 ortak pay olan a -1'dir.
Basitleştirmeden sonra: a -2 /a -1 ve 1/a -1 .

4. 2a 4 /5a 3 ve 2 /a 4 üslerini azaltın ve ortak bir paydaya getirin.
Yanıt: 2a 3 /5a 7 ve 5a 5 /5a 7 veya 2a 3 /5a 2 ve 5/5a 2.

5. (a 3 + b)/b 4'ü (a - b)/3 ile çarpın.

6. (a 5 + 1)/x 2'yi (b 2 - 1)/(x + a) ile çarpın.

7. b 4 /a -2'yi h -3 /x ve a n /y -3 ile çarpın.

8. 4 /y 3'ü 3 /y 2'ye bölün. Cevap: a/y.

9. (h 3 - 1)/d 4'ü (d n + 1)/h'ye bölün.

İlk seviye

Derece ve özellikleri. Kapsamlı rehber (2019)

Derecelere neden ihtiyaç duyulur? Onlara nerede ihtiyacınız olacak? Bunları incelemek için neden zaman ayırmalısınız?

Dereceler hakkında her şeyi, ne işe yaradıklarını, bilginizi eğitimde nasıl kullanacağınızı öğrenmek için Gündelik Yaşam bu makaleyi okuyun.

Ve elbette, derece bilgisi sizi daha da yakınlaştıracaktır. başarılı tamamlama OGE veya Birleşik Devlet Sınavı ve hayallerinizdeki üniversiteye kabul.

Hadi gidelim, hadi gidelim!)

Önemli Not! Formüller yerine gobbledygook'u görürseniz önbelleğinizi temizleyin. Bunu yapmak için CTRL+F5 (Windows'ta) veya Cmd+R (Mac'te) tuşlarına basın.

İLK SEVİYE

Üs alma, tıpkı toplama, çıkarma, çarpma veya bölme gibi matematiksel bir işlemdir.

Şimdi her şeyi açıklayacağım insan diliçok basit örnekler. Dikkat olmak. Örnekler basit ama önemli şeyleri açıklıyor.

Eklemeyle başlayalım.

Burada açıklanacak bir şey yok. Zaten her şeyi biliyorsun: sekiz kişiyiz. Herkesin iki şişe kolası var. Ne kadar kola var? Bu doğru - 16 şişe.

Şimdi çarpma.

Kola ile aynı örneği farklı şekilde yazabiliriz: . Matematikçiler kurnaz ve tembel insanlardır. Önce bazı kalıpları fark ediyorlar, sonra bunları daha hızlı "saymanın" bir yolunu buluyorlar. Bizim durumumuzda sekiz kişiden her birinin aynı sayıda kola şişesine sahip olduğunu fark ettiler ve çarpma adı verilen bir teknik geliştirdiler. Katılıyorum, bundan daha kolay ve daha hızlı kabul ediliyor.


Yani daha hızlı, daha kolay ve hatasız saymak için sadece şunu hatırlamanız gerekir: çarpım tablosu. Elbette her şeyi daha yavaş, daha zor ve hatalarla yapabilirsiniz! Ancak…

İşte çarpım tablosu. Tekrarlamak.

Ve bir tane daha, daha güzeli:

Tembel matematikçiler başka hangi zekice sayma hilelerini buldular? Sağ - bir sayıyı bir kuvvete yükseltmek.

Bir sayıyı bir kuvvete yükseltmek

Bir sayıyı kendisiyle beş kez çarpmak gerekiyorsa matematikçiler bu sayının beşinci kuvvetine çıkarmanız gerektiğini söylerler. Örneğin, . Matematikçiler ikinin beşinci kuvvetinin... Ve bu tür sorunları kafalarında çözüyorlar - daha hızlı, daha kolay ve hatasız.

Tek yapmanız gereken sayıların kuvvetleri tablosunda neyin renkli olarak vurgulandığını hatırlayın. İnanın bu hayatınızı çok kolaylaştıracak.

Bu arada neden ikinci derece deniyor? kare sayılar ve üçüncüsü - küp? Bu ne anlama geliyor? Çok iyi bir soru. Artık hem karelere hem de küplere sahip olacaksınız.

Gerçek hayattan örnek #1

Sayının karesi veya ikinci kuvvetiyle başlayalım.

Bir metreye bir metre ölçülerinde kare bir havuz hayal edin. Havuz sizin kulübenizde. Hava sıcak ve gerçekten yüzmek istiyorum. Ama... havuzun dibi yok! Havuzun altını fayanslarla kaplamanız gerekiyor. Kaç tane fayansa ihtiyacınız var? Bunu belirlemek için havuzun taban alanını bilmeniz gerekir.

Havuzun tabanının metre metre küplerden oluştuğunu parmağınızla işaret ederek kolayca hesaplayabilirsiniz. Bir metreye bir metrelik fayanslarınız varsa parçalara ihtiyacınız olacaktır. Çok kolay... Peki bu tür fayansları nerede gördünüz? Fayans büyük olasılıkla cm x cm olacak ve sonra "parmağınızla sayarak" işkence göreceksiniz. O zaman çoğalmanız gerekir. Böylece havuzun tabanının bir tarafına fayans (parçalar), diğer tarafına da fayans yerleştireceğiz. İle çarptığınızda fayans () elde edersiniz.

Havuz tabanının alanını belirlemek için aynı sayıyı kendisiyle çarptığımızı fark ettiniz mi? Bu ne anlama geliyor? Aynı sayıyı çarptığımız için “üs alma” tekniğini kullanabiliriz. (Elbette, yalnızca iki sayınız olduğunda, yine de bunları çarpmanız veya bir üssüne çıkarmanız gerekir. Ancak sayıların çoğuna sahipseniz, o zaman onları bir üssüne yükseltmek çok daha kolaydır ve ayrıca hesaplamalarda daha az hata olur. Birleşik Devlet Sınavı için bu çok önemlidir).
Yani otuz üzeri ikinci kuvvet () olacaktır. Ya da otuzun karesi olacak diyebiliriz. Başka bir deyişle, bir sayının ikinci kuvveti her zaman kare olarak gösterilebilir. Ve tam tersi, eğer bir kare görürseniz, bu HER ZAMAN bir sayının ikinci kuvvetidir. Kare, bir sayının ikinci kuvvetinin görüntüsüdür.

Gerçek hayattan örnek #2

İşte size bir görev: Sayının karesini kullanarak satranç tahtasında kaç kare olduğunu sayın... Hücrelerin bir tarafında ve diğer tarafında da. Sayılarını hesaplamak için sekizi sekizle çarpmanız gerekir veya... eğer satranç tahtasının bir kenarı olan bir kare olduğunu fark ederseniz, o zaman sekizin karesini alabilirsiniz. Hücre alacaksınız. () Bu yüzden?

Gerçek hayattan örnek #3

Şimdi bir sayının küpü veya üçüncü kuvveti. Aynı havuz. Ama şimdi bu havuza ne kadar su dökülmesi gerektiğini öğrenmeniz gerekiyor. Hacmi hesaplamanız gerekir. (Bu arada hacimler ve sıvılar metreküp cinsinden ölçülür. Beklenmedik değil mi?) Bir havuz çizin: alt kısmı bir metre boyutunda ve bir metre derinliğindedir ve bir metreye bir metre ölçüsünde kaç küpün düşeceğini saymaya çalışın. havuzunuza sığdırın.

Sadece parmağınızı doğrultun ve sayın! Bir, iki, üç, dört...yirmi iki, yirmi üç...Kaç tane aldın? Kayıp değil? Parmağınızla saymak zor mu? Böylece! Matematikçilerden bir örnek alın. Tembeller, bu yüzden havuzun hacmini hesaplamak için uzunluğunu, genişliğini ve yüksekliğini birbiriyle çarpmanız gerektiğini fark ettiler. Bizim durumumuzda havuzun hacmi küplere eşit olacaktır... Daha kolay değil mi?

Şimdi bunu da basitleştirirlerse matematikçilerin ne kadar tembel ve kurnaz olacağını hayal edin. Her şeyi tek bir eyleme indirgedik. Uzunluk, genişlik ve yüksekliğin eşit olduğunu ve aynı sayının kendisiyle çarpıldığını fark ettiler... Bu ne anlama geliyor? Bu, derecenin avantajlarından yararlanabileceğiniz anlamına gelir. Yani bir zamanlar parmağınızla saydığınız şeyi tek bir hareketle yapıyorlar: Üçün küpü eşittir. Şu şekilde yazılmıştır: .

Geriye kalan tek şey derece tablosunu hatırla. Tabii matematikçiler kadar tembel ve kurnaz değilseniz. Çok çalışmayı ve hata yapmayı seviyorsanız parmağınızla saymaya devam edebilirsiniz.

Sonunda sizi, derecelerin pes edenler ve kurnaz insanlar tarafından yaşam sorunlarını çözmek ve size sorun yaratmak için icat edilmediğine ikna etmek için, işte hayattan birkaç örnek daha.

Gerçek hayattan örnek #4

Bir milyon rublen var. Her yılın başında kazandığınız her milyona karşılık bir milyon daha kazanırsınız. Yani, sahip olduğunuz her milyon, her yılın başında iki katına çıkar. Yıllar içinde ne kadar paranız olacak? Eğer şimdi oturuyorsanız ve "parmağınızla sayıyorsanız" bu çok iyi olduğunuz anlamına gelir. Çalışkan adam ve aptal. Ama büyük olasılıkla birkaç saniye içinde cevap vereceksiniz çünkü akıllısınız! Yani, ilk yılda - iki çarpı iki... ikinci yılda - ne oldu, ikiyle daha, üçüncü yılda... Durun! Sayının kendisi ile çarpıldığını fark ettiniz. Yani ikinin beşinci kuvveti bir milyondur! Şimdi hayal edin, bir yarışmanız var ve en hızlı sayabilen bu milyonları alacak... Sayıların kuvvetlerini hatırlamakta fayda var değil mi?

Gerçek hayattan örnek #5

Bir milyonun var. Her yılın başında kazandığınız her milyona karşılık iki tane daha kazanırsınız. Harika değil mi? Her milyon üçe katlanır. Bir yılda ne kadar paran olacak? Hadi sayalım. İlk yıl - çarpın, sonra sonucu başka biriyle çarpın... Zaten sıkıcı, çünkü zaten her şeyi anladınız: üç, kendisiyle çarpılır. Yani dördüncü kuvveti bir milyona eşittir. Sadece üçün dördüncü kuvvetinin veya olduğunu hatırlamanız gerekiyor.

Artık bir sayıyı bir kuvvete yükselterek hayatınızı çok daha kolaylaştıracağınızı biliyorsunuz. Derecelerle neler yapabileceğinize ve bunlar hakkında bilmeniz gerekenlere daha detaylı bir göz atalım.

Terimler ve kavramlar... kafanızın karışmaması için

O halde öncelikle kavramları tanımlayalım. Ne düşünüyorsun, üs nedir? Çok basit; sayının kuvvetinin "en üstünde" olan sayıdır. Bilimsel değil ama açık ve hatırlanması kolay...

Peki aynı zamanda ne böyle bir derece temeli? Daha da basit - bu, tabanda aşağıda bulunan sayıdır.

İşte iyi bir önlem için bir çizim.

Peki Genel görünüm, genelleme yapmak ve daha iyi hatırlamak adına... Tabanı " " ve üssü " " olan derece, "dereceye" olarak okunur ve şu şekilde yazılır:

Doğal üssü olan bir sayının kuvveti

Muhtemelen zaten tahmin etmişsinizdir: çünkü üs doğal sayı. Evet ama nedir bu doğal sayı? İlköğretim! Doğal sayılar, nesneleri sıralarken saymada kullanılan sayılardır: bir, iki, üç... Nesneleri sayarken “eksi beş”, “eksi altı”, “eksi yedi” demeyiz. Ayrıca “üçte bir” ya da “sıfır nokta beş” demiyoruz. Bunlar doğal sayılar değil. Sizce bunlar hangi rakamlar?

“Eksi beş”, “eksi altı”, “eksi yedi” gibi sayılar bütün sayılar. Genel olarak tamsayılar, tüm doğal sayıları, doğal sayıların karşısındaki sayıları (yani eksi işaretiyle alınan) ve sayıları içerir. Sıfırın anlaşılması kolaydır; hiçbir şeyin olmadığı zamandır. Negatif (“eksi”) sayılar ne anlama geliyor? Ancak bunlar öncelikle borçları belirtmek için icat edildi: Telefonunuzda ruble cinsinden bakiyeniz varsa, bu, operatöre ruble borçlu olduğunuz anlamına gelir.

Tüm kesirler rasyonel sayılar. Sizce nasıl ortaya çıktılar? Çok basit. Birkaç bin yıl önce atalarımız uzunluk, ağırlık, alan vb. ölçmek için doğal sayıların eksik olduğunu keşfettiler. Ve şunu buldular rasyonel sayılar... İlginç, değil mi?

Biraz daha var mı irrasyonel sayılar. Bu sayılar nedir? Kısacası sonsuz ondalık. Örneğin bir dairenin çevresini çapına bölerseniz irrasyonel bir sayı elde edersiniz.

Özet:

Üssü doğal sayı (yani tamsayı ve pozitif) olan derece kavramını tanımlayalım.

  1. Herhangi bir sayının birinci kuvveti kendisine eşittir:
  2. Bir sayının karesini almak, onu kendisiyle çarpmak anlamına gelir:
  3. Bir sayının küpü, onu kendisiyle üç kez çarpmak anlamına gelir:

Tanım. Bir sayıyı doğal kuvvete yükseltmek, sayıyı kendisi ile çarpmak anlamına gelir:
.

Derecelerin özellikleri

Bu özellikler nereden geldi? Şimdi sana göstereceğim.

Bakalım: nedir bu Ve ?

A-tarikatı:

Toplamda kaç çarpan var?

Çok basit: Faktörlere çarpanlar ekledik ve sonuç çarpanlardı.

Ancak tanım gereği bu, üslü bir sayının kuvvetidir, yani: kanıtlanması gereken şey budur.

Örnek: Ifadeyi basitleştir.

Çözüm:

Örnek: Ifadeyi basitleştir.

Çözüm: Kurallarımızda şunu belirtmek önemlidir: mutlaka aynı sebepler olmalı!
Bu nedenle güçleri tabanla birleştiriyoruz ancak bu ayrı bir faktör olarak kalıyor:

sadece güçlerin ürünü için!

Hiçbir durumda bunu yazamazsınız.

2. işte bu bir sayının kuvveti

Bir önceki özellikte olduğu gibi derecenin tanımına dönelim:

İfadenin kendisi ile çarpıldığı, yani tanıma göre bu sayının inci kuvveti olduğu ortaya çıktı:

Buna özünde “göstergeyi parantez dışına çıkarmak” da denebilir. Ancak bunu asla toplamda yapamazsınız:

Kısaltılmış çarpma formüllerini hatırlayalım: Kaç kez yazmak istedik?

Ama sonuçta bu doğru değil.

Negatif tabanlı güç

Buraya kadar sadece üssün ne olması gerektiğini tartıştık.

Ama temeli ne olmalı?

yetkilerinde doğal gösterge temel olabilir herhangi bir numara. Aslında pozitif, negatif ve hatta herhangi bir sayıyı birbiriyle çarpabiliriz.

Hangi işaretlerin ("" veya "") pozitif ve negatif sayıların derecelerine sahip olacağını düşünelim?

Örneğin sayı pozitif mi negatif mi? A? ? İlkinde her şey açık: Ne kadar pozitif sayıyı birbirimizle çarparsak çarpalım sonuç pozitif olacaktır.

Ancak olumsuz olanlar biraz daha ilginç. 6. sınıftan kalma basit kuralı hatırlıyoruz: “eksi eksiye artı verir.” Yani ya da. Ama eğer çarparsak işe yarar.

Aşağıdaki ifadelerin hangi işarete sahip olacağını kendiniz belirleyin:

1) 2) 3)
4) 5) 6)

Becerebildin mi?

İşte yanıtlar: İlk dört örnekte umarım her şey açıktır? Basitçe tabana ve üsse bakıp uygun kuralı uyguluyoruz.

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

Örnek 5'te her şey göründüğü kadar korkutucu değildir: sonuçta tabanın neye eşit olduğu önemli değildir - derece çifttir, bu da sonucun her zaman pozitif olacağı anlamına gelir.

Tabanın sıfır olduğu durumlar hariç. Taban eşit değil mi? Açıkçası hayır, çünkü (çünkü).

Örnek 6) artık o kadar basit değil!

Uygulamaya yönelik 6 örnek

Çözümün analizi 6 örnek

Sekizinci kuvveti göz ardı edersek burada ne görürüz? 7. sınıf programını hatırlayalım. Peki hatırlıyor musun? Bu kısaltılmış çarpma formülü, yani kareler farkıdır! Şunu elde ederiz:

Paydaya dikkatlice bakalım. Pay faktörlerinden birine çok benziyor ama sorun ne? Terimlerin sırası yanlış. Tersine çevrilmeleri durumunda kural geçerli olabilir.

Peki bunu nasıl yapmalı? Bunun çok kolay olduğu ortaya çıktı: paydanın eşit derecesi burada bize yardımcı oluyor.

Terimler sihirli bir şekilde yer değiştirdi. Bu “olgu” her ifade için eşit derecede geçerlidir: Parantez içindeki işaretleri kolaylıkla değiştirebiliriz.

Ancak şunu hatırlamak önemlidir: tüm işaretler aynı anda değişir!

Örneğe geri dönelim:

Ve yine formül:

Tüm doğal sayılara, onların karşıtlarına (yani " " işaretiyle alınanlara) ve sayı diyoruz.

pozitif tamsayı ve doğal olandan hiçbir farkı yok, o zaman her şey tam olarak önceki bölümdeki gibi görünüyor.

Şimdi yeni vakalara bakalım. Eşit bir göstergeyle başlayalım.

Herhangi bir sayının sıfır kuvveti bire eşittir:

Her zaman olduğu gibi kendimize şu soruyu soralım: Neden böyle?

Bir tabanı olan bir dereceyi düşünelim. Örneğin şunu alın ve şununla çarpın:

Yani sayıyı ile çarptık ve - ile aynı sonucu elde ettik. Hiçbir şeyin değişmemesi için hangi sayıyla çarpmanız gerekir? Aynen öyle. Araç.

Aynısını isteğe bağlı bir sayıyla da yapabiliriz:

Kuralı tekrarlayalım:

Herhangi bir sayının sıfır kuvveti bire eşittir.

Ancak birçok kuralın istisnaları vardır. Ve burada da orada - bu bir sayıdır (temel olarak).

Bir yandan herhangi bir dereceye eşit olmalıdır - sıfırı kendisiyle ne kadar çarparsanız çarparsanız çarpın yine sıfır elde edersiniz, bu açık. Ancak öte yandan herhangi bir sayının sıfır üssü gibi eşit olması gerekir. Peki bunun ne kadarı doğru? Matematikçiler bu işe karışmamaya karar verdiler ve sıfırın sıfır kuvvetini yükseltmeyi reddettiler. Yani artık sadece sıfıra bölmekle kalmıyoruz, aynı zamanda sıfırıncı kuvvetine de çıkarıyoruz.

Hadi devam edelim. Tam sayılar, doğal sayılar ve sayıların yanı sıra negatif sayıları da içerir. Negatif derecenin ne olduğunu anlamak için geçen seferki gibi yapalım: normal bir sayıyı aynı sayıyla çarpalım. negatif derece:

Buradan aradığınızı ifade etmek kolaydır:

Şimdi ortaya çıkan kuralı keyfi bir dereceye kadar genişletelim:

O halde bir kural oluşturalım:

Negatif kuvvete sahip bir sayı, aynı sayının pozitif kuvvete sahip tersidir. Ama aynı zamanda Taban boş olamaz:(çünkü bölemezsiniz).

Özetleyelim:

I. İfade durumda tanımlanmamıştır. Eğer öyleyse.

II. Herhangi bir sayının sıfır kuvveti bire eşittir: .

III. Sıfırın negatif kuvvetine eşit olmayan bir sayı, aynı sayının pozitif kuvvetinin tersidir: .

Bağımsız çözüm için görevler:

Her zamanki gibi bağımsız çözümlere örnekler:

Bağımsız çözüm için problemlerin analizi:

Biliyorum, rakamlar korkutucu ama Birleşik Devlet Sınavında her şeye hazırlıklı olmalısınız! Bu örnekleri çözün veya çözemediyseniz çözümlerini inceleyin, sınavda bunlarla kolayca baş etmeyi öğreneceksiniz!

Üslü olarak “uygun” sayı aralığını genişletmeye devam edelim.

Şimdi düşünelim rasyonel sayılar. Hangi sayılara rasyonel denir?

Cevap: Kesir olarak temsil edilebilecek her şey, burada ve tam sayıdır ve.

Ne olduğunu anlamak için "kesirli derece", kesri düşünün:

Denklemin her iki tarafının da üssünü alalım:

Şimdi şu kuralı hatırlayalım: "dereceden dereceye":

Almak için hangi sayının bir güce yükseltilmesi gerekir?

Bu formülasyon inci derecenin kökünün tanımıdır.

Size hatırlatmama izin verin: bir sayının () inci kuvvetinin kökü, bir kuvvete yükseltildiğinde eşit olan bir sayıdır.

Yani, inci kuvvetin kökü, bir kuvvete yükseltme işleminin ters işlemidir: .

Şekline dönüştü. Açıkçası, bu özel durum genişletilebilir: .

Şimdi payı ekliyoruz: nedir bu? Güç-güç kuralını kullanarak cevabı elde etmek kolaydır:

Peki taban herhangi bir sayı olabilir mi? Sonuçta tüm sayıların kökü çıkarılamaz.

Hiçbiri!

Kuralı hatırlayalım: Çift kuvvete yükseltilen herhangi bir sayı pozitif bir sayıdır. Yani negatif sayılardan çift kök çıkarmak imkansızdır!

Bu, bu tür sayıların çift paydayla kesirli kuvvetine yükseltilemeyeceği, yani ifadenin anlamlı olmadığı anlamına gelir.

Peki ya ifade?

Ancak burada bir sorun ortaya çıkıyor.

Sayı, örneğin veya gibi diğer indirgenebilir kesirler biçiminde temsil edilebilir.

Ve var olduğu, ancak olmadığı ortaya çıktı, ancak bunlar aynı sayının sadece iki farklı kaydı.

Veya başka bir örnek: Bir kez, sonra yazabilirsiniz. Ancak göstergeyi farklı yazarsak başımız yine belaya girer: (yani tamamen farklı bir sonuç elde ettik!).

Bu tür paradokslardan kaçınmak için şunu düşünüyoruz: kesirli üssü olan tek pozitif taban üssü.

Yani eğer:

  • - doğal sayı;
  • - tamsayı;

Örnekler:

Rasyonel üsler, kökleri olan ifadeleri dönüştürmek için çok kullanışlıdır, örneğin:

Uygulamaya yönelik 5 örnek

Eğitim için 5 örneğin analizi

Eh, şimdi en zor kısım geliyor. Şimdi çözeceğiz irrasyonel üslü derece.

Buradaki derecelerin tüm kuralları ve özellikleri, istisna dışında, rasyonel üslü bir dereceyle tamamen aynıdır.

Sonuçta, tanım gereği irrasyonel sayılar, kesir olarak temsil edilemeyen sayılardır; burada ve tamsayılardır (yani, irrasyonel sayıların rasyonel olanlar dışında tümü gerçek sayılardır).

Doğal, tamsayılı ve rasyonel üslü dereceleri incelerken, her defasında daha tanıdık terimlerle belirli bir "görüntü", "analoji" veya açıklama yarattık.

Örneğin, doğal üslü bir derece, kendisiyle birkaç kez çarpılan bir sayıdır;

...sayının sıfırıncı kuvveti- bu, kendisiyle bir kez çarpılmış bir sayıdır, yani onu çarpmaya henüz başlamamışlardır, bu da sayının kendisinin henüz ortaya çıkmadığı anlamına gelir - bu nedenle sonuç yalnızca belirli bir "boş sayıdır" yani bir sayı;

...tamsayılı derece negatif gösterge - sanki bir tür "tersine süreç" gerçekleşmiş gibi, yani sayı kendisiyle çarpılmamış, bölünmüş gibi.

Bu arada, bilimde karmaşık göstergeli bir derece sıklıkla kullanılır, yani gösterge bile değildir gerçek Numara.

Ama okulda bu tür zorlukları düşünmüyoruz, enstitüde bu yeni kavramları kavrama fırsatı bulacaksınız.

NEREYE GİDECEĞİNİZDEN EMİN OLDUĞUMUZ! (bu tür örnekleri çözmeyi öğrenirseniz :))

Örneğin:

Kendin için karar ver:

Çözümlerin analizi:

1. Bir gücü bir güce yükseltmek için olağan kuralla başlayalım:

Şimdi göstergeye bakın. Sana hiçbir şey hatırlatmıyor mu? Kareler farkının kısaltılmış çarpımı formülünü hatırlayalım:

Bu durumda,

Şekline dönüştü:

Cevap: .

2. Üslü kesirleri aynı forma indirgeriz: ya her iki ondalık sayı ya da her ikisi de sıradan. Örneğin şunu elde ederiz:

Cevap: 16

3. Özel bir şey yok, derecelerin olağan özelliklerini kullanıyoruz:

İLERİ DÜZEY

Derecenin belirlenmesi

Derece, şu formun bir ifadesidir: , burada:

  • derece tabanı;
  • - üs.

Doğal göstergeli derece (n = 1, 2, 3,...)

Bir sayıyı n'nin doğal kuvvetine yükseltmek, sayıyı kendisi ile çarpmak anlamına gelir:

Tam sayı üssü olan derece (0, ±1, ±2,...)

Üs ise pozitif tamsayı sayı:

Yapı sıfır dereceye kadar:

İfade belirsizdir, çünkü bir yanda herhangi bir dereceye kadar bu, diğer yanda ise herhangi bir sayının 1. derecesine kadar bu olur.

Üs ise negatif tamsayı sayı:

(çünkü bölemezsiniz).

Bir kez daha sıfırlar hakkında: ifade bu durumda tanımlanmamıştır. Eğer öyleyse.

Örnekler:

Rasyonel üslü kuvvet

  • - doğal sayı;
  • - tamsayı;

Örnekler:

Derecelerin özellikleri

Sorunları çözmeyi kolaylaştırmak için şunu anlamaya çalışalım: Bu özellikler nereden geldi? Bunları kanıtlayalım.

Bakalım: nedir ve?

A-tarikatı:

Yani bu ifadenin sağ tarafında aşağıdaki çarpımı elde ederiz:

Ancak tanım gereği bu, üssü olan bir sayının kuvvetidir, yani:

Q.E.D.

Örnek : Ifadeyi basitleştir.

Çözüm : .

Örnek : Ifadeyi basitleştir.

Çözüm : Kurallarımızda şunu belirtmek önemlidir: mutlaka aynı sebepler olmalı. Bu nedenle güçleri tabanla birleştiriyoruz ancak bu ayrı bir faktör olarak kalıyor:

Bir diğer önemli Not: bu kural - yalnızca güçlerin ürünü için!

Hiçbir durumda bunu yazamazsınız.

Bir önceki özellikte olduğu gibi derecenin tanımına dönelim:

Bu çalışmayı şu şekilde yeniden gruplayalım:

İfadenin kendisi ile çarpıldığı, yani tanıma göre bu sayının inci kuvveti olduğu ortaya çıktı:

Buna özünde “göstergeyi parantez dışına çıkarmak” da denebilir. Ancak bunu asla toplamda yapamazsınız: !

Kısaltılmış çarpma formüllerini hatırlayalım: Kaç kez yazmak istedik? Ama sonuçta bu doğru değil.

Negatif tabanlı güç.

Bu noktaya kadar sadece nasıl olması gerektiğini tartıştık. indeks derece. Ama temeli ne olmalı? yetkilerinde doğal gösterge temel olabilir herhangi bir numara .

Aslında pozitif, negatif ve hatta herhangi bir sayıyı birbiriyle çarpabiliriz. Hangi işaretlerin ("" veya "") pozitif ve negatif sayıların derecelerine sahip olacağını düşünelim?

Örneğin sayı pozitif mi negatif mi? A? ?

İlkinde her şey açık: Ne kadar pozitif sayıyı birbirimizle çarparsak çarpalım sonuç pozitif olacaktır.

Ancak olumsuz olanlar biraz daha ilginç. 6. sınıftan kalma basit kuralı hatırlıyoruz: “eksi eksiye artı verir.” Yani ya da. Ancak () ile çarparsak - elde ederiz.

Ve bu böyle sonsuza kadar devam eder: Sonraki her çarpmada işaret değişecektir. Aşağıdakileri formüle edebiliriz Basit kurallar:

  1. eşit derece, - sayı pozitif.
  2. Negatif bir sayı, yerleşik garip derece, - sayı olumsuz.
  3. Pozitif sayı herhangi bir dereceye kadar pozitif bir sayıdır.
  4. Sıfırın herhangi bir kuvveti sıfıra eşittir.

Aşağıdaki ifadelerin hangi işarete sahip olacağını kendiniz belirleyin:

1. 2. 3.
4. 5. 6.

Becerebildin mi? İşte yanıtlar:

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

İlk dört örnekte umarım her şey açıktır? Basitçe tabana ve üsse bakıp uygun kuralı uyguluyoruz.

Örnek 5'te her şey göründüğü kadar korkutucu değildir: sonuçta tabanın neye eşit olduğu önemli değildir - derece çifttir, bu da sonucun her zaman pozitif olacağı anlamına gelir. Tabanın sıfır olduğu durumlar hariç. Taban eşit değil mi? Açıkçası hayır, çünkü (çünkü).

Örnek 6) artık o kadar basit değil. Burada hangisinin daha az olduğunu bulmanız gerekiyor: veya? Bunu hatırlarsak, tabanın sıfırdan küçük olduğu anlaşılır. Yani kural 2'yi uyguluyoruz: sonuç negatif olacak.

Ve yine derecenin tanımını kullanıyoruz:

Her şey her zamanki gibi - derecelerin tanımını yazıp bunları birbirine bölüyoruz, çiftlere ayırıyoruz ve şunu elde ediyoruz:

Son kurala bakmadan önce birkaç örnek çözelim.

İfadeleri hesaplayın:

Çözümler :

Sekizinci kuvveti göz ardı edersek burada ne görürüz? 7. sınıf programını hatırlayalım. Peki hatırlıyor musun? Bu kısaltılmış çarpma formülü, yani kareler farkıdır!

Şunu elde ederiz:

Paydaya dikkatlice bakalım. Pay faktörlerinden birine çok benziyor ama sorun ne? Terimlerin sırası yanlış. Eğer bunlar tersine çevrilseydi kural 3 geçerli olabilirdi ama nasıl? Bunun çok kolay olduğu ortaya çıktı: paydanın eşit derecesi burada bize yardımcı oluyor.

Bunu çarparsanız hiçbir şey değişmez, değil mi? Ama şimdi durum şu şekilde ortaya çıkıyor:

Terimler sihirli bir şekilde yer değiştirdi. Bu “olgu” her ifade için eşit derecede geçerlidir: Parantez içindeki işaretleri kolaylıkla değiştirebiliriz. Ancak şunu hatırlamak önemlidir: Tüm işaretler aynı anda değişir! Hoşumuza gitmeyen tek bir dezavantajı değiştirerek onu değiştiremezsiniz!

Örneğe geri dönelim:

Ve yine formül:

Şimdi son kural:

Bunu nasıl kanıtlayacağız? Elbette her zamanki gibi: Derece kavramını genişletelim ve basitleştirelim:

Şimdi parantezleri açalım. Toplamda kaç harf var? çarpanlara göre çarpı - bu size neyi hatırlatıyor? Bu bir operasyonun tanımından başka bir şey değil çarpma işlemi: Orada sadece çarpanlar vardı. Yani, tanım gereği bu, üssü olan bir sayının kuvvetidir:

Örnek:

İrrasyonel üslü derece

Ortalama seviye için derecelerle ilgili bilgilere ek olarak, dereceyi irrasyonel bir üsle analiz edeceğiz. Buradaki derecelerin tüm kuralları ve özellikleri, rasyonel üslü bir derece ile tamamen aynıdır; ancak, sonuçta, tanım gereği, irrasyonel sayılar, kesir olarak temsil edilemeyen sayılardır; burada ve tamsayılardır (yani irrasyonel sayılar, rasyonel sayılar dışında tüm gerçek sayılardır).

Doğal, tamsayılı ve rasyonel üslü dereceleri incelerken, her defasında daha tanıdık terimlerle belirli bir "görüntü", "analoji" veya açıklama yarattık. Örneğin, doğal üslü bir derece, kendisiyle birkaç kez çarpılan bir sayıdır; sıfır üssü bir sayı, olduğu gibi, kendisiyle bir kez çarpılmış bir sayıdır, yani onu çarpmaya henüz başlamamışlardır, bu da sayının kendisinin henüz ortaya çıkmadığı anlamına gelir - bu nedenle sonuç yalnızca belirlidir “boş sayı”, yani bir sayı; tamsayı negatif üssü olan bir derece - sanki bir tür "tersine süreç" gerçekleşmiş gibi, yani sayı kendisiyle çarpılmamış, bölünmüş gibi.

İrrasyonel bir üste sahip bir dereceyi hayal etmek son derece zordur (tıpkı 4 boyutlu bir uzayı hayal etmenin zor olması gibi). Daha ziyade matematikçilerin derece kavramını tüm sayılar uzayına yaymak için yarattığı tamamen matematiksel bir nesnedir.

Bu arada, bilimde karmaşık üslü bir derece sıklıkla kullanılır, yani üs gerçek bir sayı bile değildir. Ama okulda bu tür zorlukları düşünmüyoruz, enstitüde bu yeni kavramları kavrama fırsatı bulacaksınız.

Peki irrasyonel bir üs görürsek ne yaparız? Bundan kurtulmak için elimizden geleni yapıyoruz! :)

Örneğin:

Kendin için karar ver:

1) 2) 3)

Yanıtlar:

  1. Kareler farkı formülünün farkını hatırlayalım. Cevap: .
  2. Kesirleri aynı forma indirgeriz: ya her ikisi de ondalık sayı ya da her ikisi de sıradan. Örneğin şunu elde ederiz: .
  3. Özel bir şey yok, derecelerin olağan özelliklerini kullanıyoruz:

BÖLÜMÜN ÖZETİ VE TEMEL FORMÜLLER

Derece formun ifadesi olarak adlandırılır: , burada:

Tamsayı üssü olan derece

üssü bir doğal sayı olan (yani tamsayı ve pozitif) bir derece.

Rasyonel üslü kuvvet

Üssü negatif ve kesirli sayılar olan derece.

İrrasyonel üslü derece

üssü sonsuz bir ondalık kesir veya kök olan bir derece.

Derecelerin özellikleri

Derecelerin özellikleri.

  • Negatif sayı yükseltildi eşit derece, - sayı pozitif.
  • Negatif sayı yükseltildi garip derece, - sayı olumsuz.
  • Herhangi bir dereceye kadar pozitif bir sayı pozitif bir sayıdır.
  • Sıfır herhangi bir kuvvete eşittir.
  • Herhangi bir sayının sıfır kuvveti eşittir.

ARTIK SÖZ SİZDE...

Makaleyi nasıl buldunuz? Beğenip beğenmediğinizi aşağıya yorum olarak yazın.

Derece özelliklerini kullanma deneyiminizi bize anlatın.

Belki sorularınız vardır. Veya öneriler.

Yorumlara yazın.

Ve sınavlarınızda iyi şanslar!

Görüntüleme