Трансформаторы презентация. Электротехника

Трансформатор – это статический электромагнитный аппарат, преобразующий величину переменного напряжения при неизменной частоте.Классификация трансформаторов:
По количеству фаз: однофазные и трехфазные
По виду магнитопровода: стержневые, броневые,
тороидальные
По назначению: силовые (питающие),
измерительные (расширяют пределы измерения
приборов) и специальные (например сварочные)
По значению выходного напряжения: понижающие
и повышающие

Виды однофазных трансформаторов

а) – стержневой трансформатор (обмотки
разнесены на два стержня)
б) – броневой трансформатор (обмотки
наматываются одна поверх другой, обмотка
высшего напряжения находится на обмотке
низшего напряжения)

Устройство однофазного трансформатора

Замкнутый магнитопровод (шихтован) набран из
листов электротехнической стали толщиной 0,35-0,5 мм,
изолированных лаком (для уменьшения потерь на
вихревые токи). Верхняя часть магнитопровода – ярмо, там
где одеты обмотки – стержень.
Обмотки из медного провода располагаются на стержнях,
изолированы от них. Первичная обмотка запитывается от
сети, а к вторичной присоединяют нагрузку.

Принцип работы однофазного трансформатора основан на явлении взаимоиндукции и законе электромагнитной индукции

При подключении первичной
обмотки трансформатора в сеть по
обмотке протекает переменный
ток, который создает в
магнитопроводе переменный
магнитный поток Ф, он
замыкается, пронизывая витки
вторичной обмотки, и наводит там
по закону электромагнитной
индукции ЭДС. Эту ЭДС и
используют для питания нагрузки.
Преобразование напряжения
достигается за счет разного
количества витков обмоток.

Коэффициент трансформации показывает во сколько раз происходит изменение переменного напряжения

Ê òð
U1 W1 I 2
U 2 W2 I1
E1 4.44 f W1 Ô
E2 4.44 f W2 Ô
Формула трансформаторной ЭДС:
W – количество витков
Ф – магнитный поток (Вб)
f - частота переменного тока (Гц)

Режим холостого хода – к первичной обмотке подведено номинальное напряжение, в ней протекает минимальный ток, а вторичная

обмотка разомкнута.
*
*
W
~U1
~U2
Ваттметр включенный
в цепь первичной
обмотки измерит
потери холостого
хода, которые идут
на перемагничивание
железа (МАГНИТНЫЕ
ПОТЕРИ)

Режим короткого замыкания – к первичной обмотке подведено 5-10% от номинального напряжения, а вторичная обмотка замкнута, в ней

протекает максимальный ток.
*
~5-10% U1
*W
Ваттметр включенный
в цепь первичной
обмотки измерит
потери короткого
замыкания, которые
идут на нагрев
проводников обмотки
(ЭЛЕКТРИЧЕСКИЕ
ПОТЕРИ)

Коэффициент полезного действия трансформатора

P2
100
P1
Р1 = U · I
– потребляемая из сети мощность
Р2 = Р1 - (Рэл+Рм)
– полезная мощность,
отдаваемая нагрузке
Рэл+Рм
мощности
– электрические и магнитные потери

Трехфазные трансформаторы

В ЛЭП используют мощные трехфазные силовые трансформаторы.

Магнитопровод
имеет три
стержня, на
каждом
расположено по
две обмотки
каждой фазы
концентрично.

Принципиальная схема трехфазного трансформатора 1 – магнитопровод 2- первичная обмотка 3 – вторичная обмотка

Трехфазный силовой трансформатор

1 – переключатель (изменяет
коэффициент трансформации на
5%)
2- изоляторы выводов обмотки
высшего напряжения
3 – изоляторы обмотки низшего
напряжения
4 – маслоуказатель
5 – расширительный бак
6 – теплообменные трубы
7 – бак с трансформаторным
маслом
8 - стержень магнитопровода
9 – обмотка низшего
напряжения
10 – обмотка высшего
напряжения

Для подключения трансформатора к ЛЭП на крышке бака есть выводы- фарфоровые изоляторы с медными стержнями.

А В С – выводы высшего напряжения
а в с – выводы низшего напряжения
О – вывод нулевого провода

Коэффициент трансформации трехфазного трансформатора зависит от способа включения обмоток и может изменяться в 1,7 раз

а)Ктр =Uл1/Uл2= Uф1/ Uф2
б)Ктр =Uл1/Uл2= 1,7·Uф1/ Uф2
В)
Ктр =Uл1/Uл2= Uф1 / 1,7· Uф2

Специальные трансформаторы

Автотрансформатор – это трансформатор, часть первичной обмотки которого принадлежит вторичной, поэтому у него можно плавно

изменять коэффициент трансформации, т.е. напряжение на выходе
варьируется.
1 – регулятор
2 – бегунок (перемещается
по виткам обмотки)
3 – тороидальный
магнитопровод с
намотанной на него медной
обмоткой

Принцип работы автотрансформатора

Бегунок, перемещаясь
по виткам первичной
обмотки, отделяет их
часть для вторичной,
отдавая напряжение на
нагрузку, чем больше
витков, тем больше
напряжение на
нагрузке.
Применяется регулятор переменного
напряжения (ЛАТР) для
запуска асинхронных
машин.

Измерительные трансформаторы – расширяют пределы измерения приборов на переменном токе за счет разницы количества витков

первичной и вторичной
обмоток.
Измерительный
трансформатор
тока работает в
режиме короткого
замыкания, через
него можно
включить
амперметр и
токовую катушку
ваттметра.

Измерительный
трансформатор
напряжения
работает в режиме
холостого хода,
через него можно
включить
вольтметр,
герцметр и
вольтметровую
катушку ваттметра.

Сварочный трансформатор используется для получения электрической дуги, используемой для сварки.

Трансформатор должен легко переходить из режима
холостого хода в режим короткого замыкания. Для
этого у него увеличивают поток рассеивания, чтобы
получить падающую внешнюю характеристику.

Сварочный трансформатор типа ТСК с раздвижными обмотками

3 – стальной
сердечник
4 – рукоять для
раздвижения
обмоток
5и6–
раздвижные
обмотки

Сварочные трансформаторы типа СТН– с дроссельными катушками, которые увеличивающими поток рассеивания, служат для регулирования

сварочного тока.
1 – трансформатор
2 – регулятор
3 – сварочный
электрод
4 - плита

Трансформаторы

Презентацию подготовила Сулименко Нелли(11 класс)

Трансформатор -статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

  • Трансформатор -статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока.

Что такое трансформатор?

30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора переменного тока. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.

  • 30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора переменного тока. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.
  • Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон.

История трансформатора

Па́вел Никола́евич Я́блочков (14сентября 1847, Сердобский уезд Саратовской губернии - 19марта 1894, Саратов) - русский электротехник, военный инженер, изобретатель и предприниматель. Известен разработкой дуговой лампы (вошедшей в историю под названием «свеча Яблочкова») и другими изобретениями в области электротехники.

  • Па́вел Никола́евич Я́блочков (14сентября 1847, Сердобский уезд Саратовской губернии - 19марта 1894, Саратов) - русский электротехник, военный инженер, изобретатель и предприниматель. Известен разработкой дуговой лампы (вошедшей в историю под названием «свеча Яблочкова») и другими изобретениями в области электротехники.

Павел Николаевич Яблочков.

Трансформаторы играют большую роль в обеспечении электроэнергией и использовании ее в практически любом агрегате, работающем от электросети. Также они используются в диагностических и промышленных целях.

  • Трансформаторы играют большую роль в обеспечении электроэнергией и использовании ее в практически любом агрегате, работающем от электросети. Также они используются в диагностических и промышленных целях.
  • Они осуществляет преобразование переменного напряжения и/или гальваническую развязку в самых различных областях применения - электроэнергетике, электронике и радиотехнике.

Предназначение.

Силовой-трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Слово «силовой» отражает работу данного вида трансформаторов с большими мощностями.

  • Силовой-трансформатор, предназначенный для преобразования электрической энергии в электрических сетях и в установках, предназначенных для приёма и использования электрической энергии. Слово «силовой» отражает работу данного вида трансформаторов с большими мощностями.

Виды трансформаторов

Автотрансформатор-вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую.

  • Автотрансформатор-вариант трансформатора, в котором первичная и вторичная обмотки соединены напрямую, и имеют за счёт этого не только электромагнитную связь, но и электрическую.

Виды трансформаторов

Трансформатор тока-трансформатор, первичная обмотка которого питается от источника тока. Типичное применение - для снижения тока первичной обмотки до удобной величины, используемой в цепях измерения, защиты, управления и сигнализации.

  • Трансформатор тока-трансформатор, первичная обмотка которого питается от источника тока. Типичное применение - для снижения тока первичной обмотки до удобной величины, используемой в цепях измерения, защиты, управления и сигнализации.

Виды трансформаторов

Трансформатор напряжения-трансформатор, питающийся от источника напряжения. Типичное применение - преобразование высокого напряжения в низкое в цепях, в измерительных цепях.

  • Трансформатор напряжения-трансформатор, питающийся от источника напряжения. Типичное применение - преобразование высокого напряжения в низкое в цепях, в измерительных цепях.

Виды трансформаторов

Импульсный трансформатор-это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса.

  • Импульсный трансформатор-это трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса.

Виды трансформаторов

Разделительный трансформатор-трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками.

  • Разделительный трансформатор-трансформатор, первичная обмотка которого электрически не связана со вторичными обмотками.

Виды трансформаторов

Согласующий трансформатор-трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем при минимальном искажении формы сигнала.

  • Согласующий трансформатор-трансформатор, применяемый для согласования сопротивления различных частей (каскадов) электронных схем при минимальном искажении формы сигнала.

Виды трансформаторов

Пик-трансформатор-трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.

  • Пик-трансформатор-трансформатор, преобразующий напряжение синусоидальной формы в импульсное напряжение с изменяющейся через каждые полпериода полярностью.

Виды трансформаторов

Сдвоенный дроссель-конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель.

  • Сдвоенный дроссель-конструктивно является трансформатором с двумя одинаковыми обмотками. Благодаря взаимной индукции катушек он при тех же размерах более эффективен, чем обычный дроссель.

Виды трансформаторов

Трансфлюксор-разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора - это большая величина остаточной намагниченности магнитопровода.

  • Трансфлюксор-разновидность трансформатора, используемая для хранения информации. Основное отличие от обычного трансформатора - это большая величина остаточной намагниченности магнитопровода.

Виды трансформаторов

Вращающийся трансформатор-Состоит из двух половин магнитопровода, каждая со своей обмоткой, одна из которой вращается относительно другой с минимальным зазором.

  • Вращающийся трансформатор-Состоит из двух половин магнитопровода, каждая со своей обмоткой, одна из которой вращается относительно другой с минимальным зазором.

Виды трансформаторов

Спасибо за внимание!!!

Что такое трансформатор?ЧТО ТАКОЕ ТРАНСФОРМАТОР?
Трансформатор - это очень простое устройство, которое
позволяет как повышать, так и понижать напряжение, и
преобразовывать переменный ток.
Впервые трансформаторы были использованы в 1878 г.
русским ученым П. Н. Яблочковым для питания
изобретенных им «электрических свечей»

Устройство

УСТРОЙСТВО
Трансформатор состоит из замкнутого железного сердечника, на
который надеты две (иногда и более) катушки с проволочными
обмотками. Одна из обмоток, называемая первичной,
подключается к источнику переменного напряжения. Вторая
обмотка, к которой присоединяют «нагрузку», т. е. приборы и
устройства, потребляющие электроэнергию, называется
вторичной. Схема устройства трансформатора с двумя обмотками
приведена на рисунке.

Схема И устройствО

СХЕМА И УСТРОЙСТВО

Принцип действия

ПРИНЦИП ДЕЙСТВИЯ
Действие трансформатора основано на явлении электромагнитной
индукции. При прохождении переменного тока по первичной обмотке
в железном сердечнике появляется переменный магнитный поток,
который возбуждает электродвижущую силу индукции в каждой
обмотке. Это означает, что, повышая с помощью трансформатора
напряжение в несколько раз, мы во столько же раз уменьшаем силу
тока, и наоборот.

Виды трансформаторов

ВИДЫ ТРАНСФОРМАТОРОВ
Силовой трансформатор
- трансформатор,
предназначенный для преобразования электрической
энергии в электрических сетях и в установках,
предназначенных для приёма и использования
электрической энергии.

Автотрансформатор - вариант
трансформатора, в котором первичная и
вторичная обмотки соединены напрямую, и
имеют за счёт этого не только
электромагнитную связь, но и электрическую.
Обмотка автотрансформатора имеет
несколько выводов (как минимум 3),
подключаясь к которым, можно получать
разные напряжения. Недостатком является
отсутствие электрической изоляции
(гальванической развязки) между первичной
и вторичной цепью. Преимущество
автотрансформатора - более высокий КПД,
меньший расход стали для сердечника, меди

Трансформатор тока - трансформатор, питающийся
от источника тока. Типичное применение - для
снижения первичного тока до величины,
используемой в цепях измерения, защиты,
управления и сигнализации. Номинальное значение
тока вторичной обмотки 1А, 5А. Первичная обмотка
трансформатора тока включается в цепь с
измеряемым переменным током, а во вторичную
включаются измерительные приборы. Ток,
протекающий по вторичной обмотке трансформатора
тока, равен току первичной обмотки, деленному на
коэффициент трансформации.

Трансформатор напряжения - трансформатор,
питающийся от источника напряжения. Типичное
применение - преобразование высокого напряжения
в низкое в цепях. Применение трансформатора
напряжения позволяет изолировать логические
цепи защиты и цепи измерения от цепи высокого
напряжения.

Импульсный трансформатор - это трансформатор,
предназначенный для преобразования импульсных
сигналов с длительностью импульса до десятков
микросекунд с минимальным искажением формы
импульса. Основное применение - передача
прямоугольного электрического импульса. Он служит
для трансформации кратковременных
видеоимпульсов напряжения, обычно периодически
повторяющихся с высокой скважностью.

Разделительный трансформатор - это
трансформатор, первичная обмотка которого
электрически не связана со вторичными
обмотками.
Силовые
разделительные
трансформаторы
предназначены
для
повышения безопасности электросетей, при
случайных одновременных прикасаний к земле
и токоведущим частям или нетоковедущим
частям,
которые
могут
оказаться
под
напряжением в случае повреждения изоляции.
Сигнальные разделительные трансформаторы
обеспечивают
гальваническую
развязку
электрических цепей.







Режим короткого замыкания Так как ток I 2к во вторичной обмотке велик, то даже при малом входном напряжении U 1k ток в первичной обмотке I 1k достигает больших значений. Это может привести к перегреву или даже перегоранию одной из обмоток трансформатора.




Режим нагрузки Ток вторичной обмотки I 2 оказывает существенное влияние на ток в первичной обмотке I 1. Это обусловлено встречным включением обмоток, при котором общий магнитный поток в первичной обмотке равен разности магнитных потоков, создаваемых в ней токами первичной и вторичной обмоток: магнитный поток от тока I 2 уменьшает общий магнитный поток через первичную обмотку, а стало быть, уменьшает суммарную, индуцируемую в ней ЭДС, что приводит к увеличению тока I 1 в ней до такой его величины, при которой ее суммарная ЭДС совместно с падением напряжения на активном сопротивлении и, уравновесят приложенное к первичной обмотке напряжение U 1.










Особенности автотрансформаторов Ток в общей части обмотки автотрансформатора меньше, чем в остальной ее части, поскольку по общей части обмотки протекают почти встречные токи первичной и вторичной цепей. Мощность первичной цепи передается во вторичную цепь как электромагнитным (трансформаторным), так и электрическим способами.


Достоинства автотрансформаторов: экономичность обмоточные материалы расходуются только на одну обмотку; меньшие потери в меди и больший КПД - токи в общей части направлены встречно; возможность плавной регулировки напряжения U 2 вторичной цепи при непрерывном скольжении контакта по зачищенной поверхности витков.










Конструкция трансформаторов Конструктивное исполнение трансформатора зависит от его назначения и области применения. Однако почти все трансформаторы имеют одни и те же главные конструктивные элементы магнитную систему и обмотки. Наиболее широко применяются силовые трансформаторы, которые служат для передачи электрической энергии и распределения ее между потребителями.


Плотность тока в обмотках Плотность тока в обмотках выбирают по условиям нагрева в пределах (1-2,5)·10 6 А/м 2 в сухих и (2-4,5)·10 6 А/м 2 в масляных в зависимости от мощности и конструктивного выполнения трансформатора. По условиям технологии максимальное сечение круглого проводника выбирается примерно до 20 мм 2, а прямоугольного 80 мм 2. Предельный ток одного проводника соответственно 45 и 360 А.


Элементы обмотки Основным элементом обмотки является виток, который выполняется одним или группой параллельных проводов. Ряд витков на цилиндрической поверхности называется слоем. Витки могут группироваться в катушки. По направлению намотки обмотки делятся на правые и левые подобно резьбе винта. Большинство обмоток трансформаторов выполняются с левой намоткой для удобства изготовления.


Разновидности обмоток Определяющими для конструкции обмотки являются число витков, сечение витка и класс напряжения. По способу размещения обмоток на стержне различают обмотки концентрические и дисковые или чередующиеся. По конструктивно-технологическим признакам обмотки делятся на следующие основные типы: цилиндрические, винтовые и непрерывные.


Разновидности обмоток Обмотки каждого из этих типов могут подразделяться на одно- или многослойные цилиндрические, одно- или многоходовые винтовые, дисковые, переплетенные. В мощных трансформаторах, предназначенных для питания электропечей, применяют обмотки из листовой меди или алюминия, а также кованые катушки выполненные из шинной меди или алюминия.






Цилиндрические слоевые обмотки Цилиндрические слоевые обмотки выполняются из проводов прямоугольного или круглого сечения. Слои обмотки составляют витки, наматываемые по винтовой линии. При намотке каждый виток слоя укладывают вплотную к предыдущему витку в направлении высоты обмотки. Переход из слоя в слой осуществляется в процессе намотки без пайки. Витки состоят из одного или нескольких параллельных проводов, располагаемых обычно рядом в осевом направлении.




Катушечная многослойная цилиндрическая обмотка состоит из ряда последовательно соединенных многослойных катушек. Такое разделение необходимо для уменьшения напряжения между слоями. Обычно катушечные обмотки выполняют в виде последовательно соединенных парных (двойных) катушек.




Дисковые катушечные обмотки Дисковые катушечные обмотки состоят из ряда одинарных или двойных катушек. Число витков в одной катушке достигает 2025, число параллельных проводников в витке - до 8. Витки катушки намотаны один на другой по спирали в радиальном направлении. Намотанные катушки собирают на шаблоне и соединяют пайкой. Осевые и радиальные каналы образуются П-образными замковыми прокладками. Такие обмотки широко применяются в высоковольтных трансформаторах в качестве входных катушек.


Винтовые обмотки Винтовая обмотка состоит из ряда витков, наматываемых по винтовой линии. В трансформаторах большой мощности число параллельных проводников может достигать многих десятков. Винтовые обмотки бывают одно-, двух- и многоходовыми. Двухходовые и многоходовые обмотки состоят соответственно из двух или более отдельных винтовых обмоток, вмотанных одна в другую. Каналы для охлаждения образуются так же, как и в непрерывной обмотке.




Непрерывные обмотки Непрерывная обмотка состоит из ряда катушек, расположенных в осевом направлении и соединенных между собой последовательно без пайки. Число катушек в обмотке - от 30 до 150. Витки в катушке наматываются плашмя по спирали в радиальном направлении. Катушки наматываются на рейках, образующих вертикальные каналы. На рейки надеваются прокладки, создающие радиальные каналы между катушками.


Непрерывные обмотки Каждый виток обмотки может состоять из одного или нескольких параллельных проводов. Путем перестановки (транспозиции) параллельных проводов на переходах из катушки в катушку обеспечивается выравнивание их активного и индуктивного сопротивлений.










Трехфазный броневой трансформатор Трехфазный броневой трансформатор получается из трех однофазных, если их поставить друг на друга. При такой конструкции потоки в ярмах равны половине потока в стержнях. 1, 2, 3 обмотки НН фаз А, В, С; 1, 2", 3" обмотки ВН фаз А, В, С.


Конструкция силовых трансформаторов В силовых трансформаторах мощностью свыше 100 МВ·А и напряжениями 220 кВ и выше применяют бронестержневую или многостержневую конструкцию. Эта конструкция получается из стержневой, если добавить два стержня,закрывающих обмотки двух фаз, расположенных на крайних стержнях трехфазного стержневого трансформатора. По сравнению со стержневыми бронестержневые трансформаторы имеют меньшую высоту магнитопроводов, что очень важно при транспортировке, так как позволяет им лучше вписаться в железнодорожные габариты.




Стыковые конструкции Стержни и ярма собираются отдельно и крепятся друг с другом стяжными шпильками. В месте стыков ставятся изоляционные прокладки, которые устраняют замыкание листов стали стержней и ярм. Немагнитные зазоры при стыковой конструкции увеличивают магнитное сопротивление, что приводит к увеличению тока холостого хода. Поэтому стыковые соединения применяются редко, хотя стыковые конструкции менее трудоемки.






Материал магнитной системы В качестве материала магнитной системы используется главным образом холоднокатаная текстурованная электротехническая сталь марок 3413, 3404, 3405, 3406, которая поставляется на заводы в рулонах. Толщина стали 0,3; 0,35; 0,5 мм. Сталь толщиной 0,3 и 0,35 мм имеет электроизоляционное нагревостойкое покрытие, а сталь толщиной 0,5 мм не имеет электроизоляционного покрытия. Применение этой стали позволило повысить магнитную индукцию в магнитопроводах силовых трансформаторов до 1,71,8 Тл при одновременном уменьшении массы, потерь и тока холостого хода.


Шихтованные конструкции В шихтованных конструкциях стержни и ярма не являются отдельными элементами, а их пластины переплетаются (шихтуются) в смежных слоях. Магнитная система собирается из отдельных слоев, каждый из которых состоит из одной или нескольких пластин, уложенных в слое встык. По форме стыка шихтованные магнитные системы могут выполняться с прямым и косым стыками, что необходимо для уменьшения длины участков магнитной цепи, на которых направление магнитного потока не совпадает с направлением прокатки электротехнической стали.




55 Схемы и группы соединений В однофазных трансформаторах начала обмоток обозначаются А, а, а концы X, х. Большие буквы относятся к обмоткам высшего напряжения, а малые к обмоткам низшего напряжения. В трехфазных трансформаторах начала обмоток высшего напряжения обозначаются А, В, С, а концы X, У,Z. Начала обмоток низшего напряжения а, в, с, а концы х, у,z. Нулевые точки О и о. Если есть третья обмотка среднего напряжения, используются обозначения А m, B m, С m и Х т, У m,Z т.


Группы соединений однофазных трансформаторов Дня однофазных трансформаторов возможны две группы соединений: нулевая и шестая. Для нулевой (или двенадцатой) сдвиг между напряжениями равен 0° - минутная и часовая стрелки совпадают. Для шестой группы сдвиг между напряжениями 180°, стрелки показывают 6 ч. Эти группы обозначаются соответственно I/I-0 и I/I-6. Стандартизована и применяется группа 0.


Схемы и группы соединений Принято сдвиг фаз между линейными напряжениями обмоток характеризовать положением стрелок на циферблате часов. Электродвижущую силу обмотки высшего напряжения совмещают с минутной стрелкой и устанавливают на цифре 12. Часовая (малая) стрелка совмещается с напряжением обмотки низшего напряжения.


Схемы и группы соединений В трехфазных и многофазных трансформаторах наибольшее применение имеют схемы соединения в звезду и треугольник. Схема соединения в зигзаг применяется редко, а другие комбинации соединений обмоток практически не применяются. Схема соединения в звезду обозначается буквой Y, соединения в треугольник, в зигзаг Z.




Группы соединений трехфазных систем В трехфазной системе схемы соединений Y и образуют 12 групп соединений со сдвигом фаз линейных напряжений на 30°, что соответствует 12 цифрам циферблата часов. Стандартизованы две группы соединений Y/Y-О и Y/-11 со сдвигом фаз 0° и 330°. В эксплуатации вполне достаточно иметь две группы соединений и не выпускать 10 остальных групп.
Определение группы соединений Соединяют одноименные выводы обмоток высшего и низшего напряжений, например А и а. Присоединяют трансформатор к сети с симметричным напряжением и измеряют напряжения между выводами трансформатора. По измеренным напряжениям строят векторную диаграмму, которая должна совпасть с одной из диаграмм таблицы 1. После этого определяют группу соединения трансформатора.

Однофазный трансформатор

План лекции: 1. Устройство трансформатора. 2. Однофазный трансформатор.

1. Устройство трансформатора индуктивно связанных электромагнитной Трансформатор называют статистическое (или электромагнитное устройство, имеющее две более) обмоток и предназначенное для преобразования посредством явления одной (первичной) системы переменного тока в другую (вторичную) систему переменного тока. Наибольшее применение в электротехнических установках, а также в энергетических системах передачи и распределения электроэнергии имеют силовые трансформаторы, посредством которых изменяют значения переменного напряжения и тока. индукции

Трансформаторы служат для передачи и распределения электроэнергии потребителей. понижающие однофазные, трех и многофазные. Трансформаторы бывают: повышающие, Простейший силовой трансформатор состоит из магнитопровода (сердечника), выполненного из ферромагнитного материала листовая электротехническая сталь), обмоток расположенных на стержнях магнитопровода (рис. 1, а). (обычно и двух Рис. 1. Электромагнитная (а) и принципиальная (б) схемы трансформатора

Одна из обмоток, которую называют первичной, присоединена к источнику переменного тока Г на напряжение U1. К другой обмотке, называемой вторичной, подключен потребитель Zн. Первичная и вторичная обмотки трансформатора не имеют электрической связи друг с другом, и мощность из одной обмотки в другую передается электромагнитным путем. Магнитопровод, на котором расположены эти обмотки, служит для усиления индуктивной связи между обмотками. На рис. 1, б показано изображение однофазного трансформатора на принципиальных электрических схемах.

ток i1, который создает индукции. электромагнитной Действие трансформатора основано на При явлении подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает в переменный магнитопроводе переменный магнитный поток Ф. Замыкаясь в магнитопроводе, этот поток сцепляется с обеими обмотками (первичной и вторичной) и индуцирует в них ЭДС: в первичной обмотке ЭДС самоиндукции: e1 = –W1(dФ/dt), во вторичной обмотке ЭДС взаимоиндукции: e2 = –W2(dФ/dt), где W1, W2 – число витков в первичной и вторичной обмотках трансформатора.

вторичной обмотки При подключении нагрузки Zн к выводам вторичной обмотки трансформатора под действием ЭДС e2 в цепи этой обмотки создается ток i2, а на выводах устанавливается напряжение U2. В повышающих трансформаторах U2 > U1, а в понижающих U2 < U1. ЭДС e1 и e2, наводимые в обмотках трансформатора, отличаются друг от друга лишь за счет разного числа витков W1 и W2 в обмотках, поэтому, требуемым соотношением изготовить трансформатор на любое отношение напряжений. Обмотку трансформатора, подключенную к сети с более высоким напряжением, называют обмоткой высшего обмотку, присоединенную к сети меньшего напряжения, – обмоткой низшего напряжения (НН). с можно напряжения (ВН); применяя обмотки витков,

Классифицируют трансформаторы по нескольким признакам: 1. По назначению – силовые общего назначения, силовые специального назначения, импульсные, для преобразования частоты и т.д. 2. По виду охлаждения – с воздушным (сухие трансформаторы) (масляные трансформаторы) охлаждением. 3. По форме магнитопровода – стержневые, броневые, бронестержневые, тороидальные. 4. По числу обмоток на фазу – двухобмоточные, многообмоточные. масляным и

2. Однофазный трансформатор Однофазным трансформатором (рис. 2) называют индуктивный преобразователь, больше или индуктивно неподвижных обмоток и предназначенный для преобразования посредством индукции параметров электрической энергии переменного тока (напряжения, тока, частоты). статический имеющий электромагнитной связанных две взаимно Рис. 2. Однофазный трансформатор

Однофазный трансформатор состоит из рамообразной магнитной системы, включающей два стержня, верхнее и нижнее ярма, обмоток высшего и низшего напряжения. Однофазный трансформатор выполняется в одном из двух видов. Первым примером выполнения однофазного трансформатора является так называемого однофазный стержневого типа (рис. 3). У него первичные и вторичные катушки расположены на железных стержнях, соединенных с торцов железными же накладками, называемыми ярмами. трансформатор,

Таким образом, два стержня и два ярма образуют замкнутое железное кольцо, в котором и проходит магнитный поток, сцепляющийся с первичной и вторичной обмотками. Это железное кольцо называется сердечником трансформатора. Рис. 3. Однофазный трансформатор стержневого вида Рис. 4. Однофазный трансформатор броневого вида


Контрольные вопросы 1. Каков принцип работы трансформатора? 2. Почему трансформаторы не работаю от сети постоянного тока? 3. Из каких частей состоит активная часть трансформатора? Каковы и конструкция? 4. Каково назначение трансформаторного масла? 5. Как определить номинальные токи и номинальное вторичное напряжение трансформатора? назначение их

Контрольные вопросы 6. нагрузки Почему с трансформатора тока увеличением увеличивается ток в его первичной обмотке? 7. Что такое приведенный трансформатор? 8. При каких условиях и почему вторичное напряжение трансформатора становится больше ЭДС? 9. Чем отличается однофазный трансформатор от трехфазного? 10. В чем различие повышающего трансформатора от понижающего?

Просмотров