Как происходит ядерная реакция в реакторе. Цепная реакция и критичность

Устройство и принцип работы

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер , для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни кельвинов , в случае же ядерных реакций - это минимум 10 7 из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Конструкция

Любой ядерный реактор состоит из следующих частей:

  • Активная зона с ядерным топливом и замедлителем ;
  • Отражатель нейтронов , окружающий активную зону;
  • Система регулирования цепной реакции , в том числе аварийная защита ;
  • Радиационная защита;
  • Система дистанционного управления.

Физические принципы работы

См. также основные статьи:

Текущее состояние ядерного реактора можно охарактеризовать эффективным коэффициентом размножения нейтронов k или реактивностью ρ , которые связаны следующим соотношением:

Для этих величин характерны следующие значения:

  • k > 1 - цепная реакция нарастает во времени, реактор находится в надкритичном состоянии, его реактивность ρ > 0;
  • k < 1 - реакция затухает, реактор - подкритичен , ρ < 0;
  • k = 1, ρ = 0 - число делений ядер постоянно, реактор находится в стабильном критическом состоянии.

Условие критичности ядерного реактора:

, где

Обращение коэффициента размножения в единицу достигается сбалансированием размножения нейтронов с их потерями. Причин потерь фактически две: захват без деления и утечка нейтронов за пределы размножающей среды.

Очевидно, что k < k 0 , поскольку в конечном объёме вследствие утечки потери нейтронов обязательно больше, чем в бесконечном. Поэтому, если в веществе данного состава k 0 < 1, то цепная самоподдерживающаяся реакция невозможна как в бесконечном, так и в любом конечном объёме. Таким образом, k 0 определяет принципиальную способность среды размножать нейтроны.

k 0 для тепловых реакторов можно определить по так называемой «формуле 4-х сомножителей»:

, где
  • η - выход нейтронов на два поглощения.

Объёмы современных энергетических реакторов могут достигать сотен м³ и определяются главным образом не условиями критичности, а возможностями теплосъёма.

Критический объём ядерного реактора - объём активной зоны реактора в критическом состоянии. Критическая масса - масса делящегося вещества реактора, находящегося в критическом состоянии.

Наименьшей критической массой обладают реакторы, в которых топливом служат водные растворы солей чистых делящихся изотопов с водяным отражателем нейтронов. Для 235 U эта масса равна 0,8 кг, для 239 Pu - 0,5 кг. Широко известно, однако, что критическая масса для реактора LOPO (первый в мире реактор на обогащённом уране), имевшего отражатель из окиси бериллия, составляла 0,565 кг, несмотря на то, что степень обогащения по изотопу 235 была лишь немногим более 14 %. Теоретически, наименьшей критической массой обладает , для которого эта величина составляет всего 10 г.

С целью уменьшения утечки нейтронов, активной зоне придают сферическую или близкую к сферической форму, например короткого цилиндра или куба, так как эти фигуры обладают наименьшим отношением площади поверхности к объёму.

Несмотря на то, что величина (e - 1) обычно невелика, роль размножения на быстрых нейтронах достаточно велика, поскольку для больших ядерных реакторов (К ∞ - 1) << 1. Без этого процесса было бы невозможным создание первых графитовых реакторов на естественном уране.

Для начала цепной реакции обычно достаточно нейтронов, рождаемых при спонтанном делении ядер урана. Возможно также использование внешнего источника нейтронов для запуска реактора, например, смеси и , или других веществ.

Иодная яма

Основная статья: Иодная яма

Иодная яма - состояние ядерного реактора после его выключения, характеризующееся накоплением короткоживущего изотопа ксенона . Этот процесс приводит к временному появлению значительной отрицательной реактивности , что, в свою очередь, делает невозможным вывод реактора на проектную мощность в течение определённого периода (около 1-2 суток).

Классификация

По назначению

По характеру использования ядерные реакторы делятся на :

  • Энергетические реакторы , предназначенные для получения электрической и тепловой энергии, используемой в энергетике , а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях . Тепловая мощность современных энергетических реакторов достигает 5 ГВт . В отдельную группу выделяют:
    • Транспортные реакторы , предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения - морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике .
  • Экспериментальные реакторы , предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает нескольких кВт .
  • Исследовательские реакторы , в которых потоки нейтронов и гамма-квантов , создаваемые в активной зоне, используются для исследований в области ядерной физики , физики твёрдого тела , радиационной химии , биологии , для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 МВт. Выделяющаяся энергия, как правило, не используется.
  • Промышленные (оружейные, изотопные) реакторы , используемые для наработки изотопов , применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239 Pu . Также к промышленным относят реакторы, использующиеся для опреснения морской воды .

Часто реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми . Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

По спектру нейтронов

  • Реактор на тепловых (медленных) нейтронах («тепловой реактор»)
  • Реактор на быстрых нейтронах («быстрый реактор»)

По размещению топлива

  • Гетерогенные реакторы , где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;
  • Гомогенные реакторы , где топливо и замедлитель представляют однородную смесь (гомогенную систему).

В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются как гомогенные, хотя в них топливо обычно отделено от замедлителя.

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки .

По виду топлива

  • изотопы урана 235, 238, 233 ( 235 U , 238 U , 233 U)
  • изотоп плутония 239 ( 239 Pu), также изотопы 239-242 Pu в виде смеси с 238 U (MOX-топливо)
  • изотоп тория 232 (232 Th) (посредством преобразования в 233 U)

По степени обогащения:

  • природный уран
  • слабо обогащённый уран
  • высоко обогащённый уран

По химическому составу:

  • металлический U
  • UC (карбид урана) и т. д.

По виду теплоносителя

  • Газ, (см. Графито-газовый реактор)
  • D 2 O (тяжёлая вода , см. Тяжеловодный ядерный реактор , CANDU)

По роду замедлителя

  • С (графит , см. Графито-газовый реактор , Графито-водный реактор)
  • H 2 O (вода, см. Легководный реактор , Водо-водяной реактор , ВВЭР)
  • D 2 O (тяжёлая вода, см. Тяжеловодный ядерный реактор , CANDU)
  • Гидриды металлов
  • Без замедлителя (см. Реактор на быстрых нейтронах)

По конструкции

По способу генерации пара

  • Реактор с внешним парогенератором (См. Водо-водяной реактор , ВВЭР)

Классификация МАГАТЭ

  • PWR (pressurized water reactors) - водо-водяной реактор (реактор с водой под давлением);
  • BWR (boiling water reactor) - кипящий реактор ;
  • FBR (fast breeder reactor) - реактор-размножитель на быстрых нейтронах ;
  • GCR (gas-cooled reactor) - газоохлаждаемый реактор;
  • LWGR (light water graphite reactor) - графито-водный реактор
  • PHWR (pressurised heavy water reactor) - тяжеловодный реактор

Наиболее распространёнными в мире являются водо-водяные (около 62 %) и кипящие (20 %) реакторы.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов , γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несущественен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для её сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом , тепловыделяющие кассеты - с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов . Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора - , обладающий наибольшим сечением поглощения нейтронов (2,6·10 6 барн). Период полураспада 135 Xe T 1/2 = 9,2 ч; выход при делении составляет 6-7 %. Основная часть 135 Xe образуется в результате распада (T 1/2 = 6,8 ч). При отравлении К эф изменяется на 1-3 %. Большое сечение поглощения 135 Xe и наличие промежуточного изотопа 135 I приводят к двум важным явлениям:

  1. К увеличению концентрации 135 Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность иодной ямы зависят от потока нейтронов Ф: при Ф = 5·10 18 нейтрон/(см²·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение К эф, вызванное отравлением 135 Xe.
  2. Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 10 18 нейтронов/(см²·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это ТВЭЛы разных «возрастов».

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, так как реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1-2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3 %, через 1 ч - 1 %, через сутки - 0,4 %, через год - 0,05 % от первоначальной мощности.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235 U называется коэффициентом конверсии K K . Величина K K увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 ГВт·сут/т K K = 0,55, а при небольших выгораниях (в этом случае K K называется начальным плутониевым коэффициентом ) K K = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства К В. В ядерных реакторах на тепловых нейтронах К В < 1, а для реакторов на быстрых нейтронах К В может достигать 1,4-1,5. Рост К В для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239 Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Управление ядерным реактором возможно только благодаря тому, что часть нейтронов при делении вылетает из осколков с запаздыванием , которое может составить от нескольких миллисекунд до нескольких минут.

Для управления реактором используют поглощающие стержни , вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (в основном , и некоторые др.) и/или раствор борной кислоты , в определённой концентрации добавляемый в теплоноситель (борное регулирование). Движение стержней управляется специальными механизмами, приводами, работающими по сигналам от оператора или аппаратуры автоматического регулирования нейтронного потока.

На случай различных аварийных ситуаций в каждом реакторе предусмотрено экстренное прекращение цепной реакции , осуществляемое сбрасыванием в активную зону всех поглощающих стержней - система аварийной защиты .

Остаточное тепловыделение

Важной проблемой, непосредственно связанной с ядерной безопасностью , является остаточное тепловыделение. Это специфическая особенность ядерного топлива, заключающаяся в том, что, после прекращения цепной реакции деления и обычной для любого энергоисточника тепловой инерции, выделение тепла в реакторе продолжается ещё долгое время, что создаёт ряд технически сложных проблем.

Остаточное тепловыделение является следствием β- и γ- распада продуктов деления , которые накопились в топливе за время работы реактора. Ядра продуктов деления вследствие распада переходят в более стабильное или полностью стабильное состояние с выделением значительной энергии.

Хотя мощность остаточного тепловыделения быстро спадает до величин, малых по сравнению со стационарными значениями, в мощных энергетических реакторах она значительна в абсолютных величинах. По этой причине остаточное тепловыделение влечёт необходимость длительное время обеспечивать теплоотвод от активной зоны реактора после его остановки. Эта задача требует наличия в конструкции реакторной установки систем расхолаживания с надёжным электроснабжением, а также обуславливает необходимость длительного (в течение 3-4 лет) хранения отработавшего ядерного топлива в хранилищах со специальным температурным режимом - бассейнах выдержки, которые обычно располагаются в непосредственной близости от реактора .

См. также

  • Перечень атомных реакторов, спроектированных и построенных в Советском Союзе

Литература

  • Левин В. Е. Ядерная физика и ядерные реакторы. 4-е изд. - М.: Атомиздат, 1979.
  • Шуколюков А. Ю. «Уран. Природный ядерный реактор». «Химия и Жизнь» № 6, 1980 г., с. 20-24

Примечания

  1. «ZEEP - Canada’s First Nuclear Reactor» , Canada Science and Technology Museum.
  2. Грешилов А. А., Егупов Н. Д., Матущенко А. М. Ядерный щит. - М .: Логос, 2008. - 438 с. -

Мы настолько привыкли к электричеству, что не задумываемся, откуда оно берётся. В основном, оно вырабатывается на электростанциях, которые используют для этого различные источники. Электростанции бывают тепловые, ветряные, геотермальные, солнечные, гидроэлектростанции, атомные. Именно последние вызывают больше всего споров. Спорят об их нужности, надёжности.

По производительности атомная энергетика сегодня – одна из самых эффективных и её доля в мировом производстве электрической энергии довольно значительна, более четверти.

Как устроена атомная электростанция, за счёт чего она вырабатывает энергию? Основной элемент атомной электростанции – ядерный реактор. В нём протекает цепная ядерная реакция, в результате которой выделяется тепло. Реакция эта управляемая, именно поэтому мы можем использовать энергию постепенно, а не получаем ядерный взрыв.

Основные элементы ядерного реактора

  • Ядерное топливо: обогащённый уран, изотопы урана и плутония. Чаще всего используется уран 235;
  • Теплоноситель для вывода энергии, которая образуется при работе реактора: вода, жидкий натрий и др.;
  • Регулирующие стержни;
  • Замедлитель нейтронов;
  • Оболочка для защиты от излучения.

Видео работы ядерного реактора

Как работает ядерный реактор?

В активной зоне реактора располагаются тепловыделяющие элементы (ТВЭЛ) – ядерное топливо. Они собраны в кассеты, включающие в себя по несколько десятков ТВЭЛов. По каналам через каждую кассету протекает теплоноситель. ТВЭЛы регулируют мощность реактора. Ядерная реакция возможна только при определённой (критической) массе топливного стержня. Масса каждого стержня в отдельности ниже критической. Реакция начинается, когда все стержни находятся в активной зоне. Погружая и извлекая топливные стержни, реакцией можно управлять.

Итак, при превышении критической массы топливные радиоактивные элементы, выбрасывают нейтроны, которые сталкиваются с атомами. В результате образуется нестабильный изотоп, который сразу же распадается, выделяя энергию в виде гамма излучения и тепла. Частицы, сталкиваясь, сообщают кинетическую энергию друг другу, и количество распадов в геометрической прогрессии увеличивается. Это и есть цепная реакция — принцип работы ядерного реактора. Без управления она происходит молниеносно, что приводит к взрыву. Но в ядерном реакторе процесс находится под контролем.

Таким образом в активной зоне выделяется тепловая энергия, которая передаётся воде, омывающей эту зону (первый контур). Здесь температура воды 250-300 градусов. Далее вода отдаёт тепло второму контуру, после этого – на лопатки турбин, вырабатывающих энергию. Преобразование ядерной энергии в электрическую можно представить схематично:

  1. Внутренняя энергия уранового ядра,
  2. Кинетическая энергия осколков распавшихся ядер и освободившихся нейтронов,
  3. Внутренняя энергия воды и пара,
  4. Кинетическая энергия воды и пара,
  5. Кинетическая энергия роторов турбины и генератора,
  6. Электрическая энергия.

Активная зона реактора состоит из сотен кассет, объединенных металлической оболочкой. Эта оболочка играет также роль отражателя нейтронов. Среди кассет вставлены управляющие стержни для регулировки скорости реакции и стержни аварийной защиты реактора. Далее, вокруг отражателя устанавливается теплоизоляция. Поверх теплоизоляции находится защитная оболочка из бетона, которая задерживает радиоактивные вещества и не пропускает их в окружающее пространство.

Где используются ядерные реакторы?

  • Энергетические ядерные реакторы используются на атомных электростанциях, в судовых электрических установках, на атомных станциях теплоснабжения.
  • Реакторы конвекторы и размножители применяются для производства вторичного ядерного топлива.
  • Исследовательские реакторы нужны для радиохимических и биологических исследований, производства изотопов.

Несмотря на все споры и разногласия по поводу ядерной энергетики атомные электростанции продолжают строиться и эксплуатироваться. Одна из причин – экономичность. Простой пример: 40 цистерн мазута или 60 вагонов угля производят столько же энергии, сколько 30 килограммов урана.

Вот этот невзрачный серый цилиндр и является ключевым звеном российской атомной индустрии. Выглядит, конечно, не слишком презентабельно, но стоит понять его назначение и взглянуть на технические характеристики, как начинаешь осознавать, почему секрет его создания и устройства государство охраняет как зеницу ока.

Да, забыл представить: перед вами газовая центрифуга для разделения изотопов урана ВТ-3Ф (n-го поколения). Принцип действия элементарный, как у молочного сепаратора, тяжелое, по воздействием центробежной силы, отделяется от легкого. Так в чем же значимость и уникальность?

Для начала ответим на другой вопрос – а вообще, зачем разделять уран?

Природный уран, который вот прямо в земле лежит, представляет из себя коктейль из двух изотопов: урана-238 и урана-235 (и 0,0054 % U-234).
Уран-238 , это просто тяжелый, серого цвета металл. Из него можно сделать артиллерийский снаряд, ну или… брелок для ключей. А вот что можно сделать из урана-235 ? Ну во первых атомную бомбу, во вторых топливо для АЭС. И вот тут мы подходим к ключевому вопросу – как разделить эти два, практически идентичных атома, друг от друга? Нет, ну действительно, КАК?!

Кстати: Радиус ядра атома урана —1.5 10 -8 см.

Для того, что бы атомы урана можно было загнать в технологическую цепочку, его (уран) нужно превратить в газообразное состояние. Кипятить смысла нет, достаточно соединить уран с фтором и получить гексафторид урана ГФУ . Технология его получения не очень сложная и затратная, а потому ГФУ получают прямо там, где этот уран и добывают. UF6 является единственным легколетучим соединением урана (при нагревании до 53°С гексафторид (на фото) непосредственно переходит из твердого состояния в газообразное). Затем его закачивают в специальные емкости и отправляют на обогащение.

Немного истории

В самом начале ядерной гонки, величайшими научными умами, как СССР, так и США, осваивалась идея диффузионного разделения – пропускать уран через сито. Маленький 235-й изотоп проскочит, а «толстый» 238-й застрянет. Причем изготовить сито с нано-отверстиями для советской промышленности в 1946-м году было не самой сложной задачей.

Из доклада Исаака Константиновича Кикоина на научно-технического совете при Совете Народных Комиссаров (приведен в сборнике рассекреченных материалах по атомному проекту СССР (Ред. Рябев)): В настоящее время мы научились делать сетки с отверстиями около 5/1 000 мм, т.е. в 50 раз большими длины свободного пробега молекул при атмосферном давлении. Следовательно, давление газа, при котором разделение изотопов на таких сетках будет происходить, должно быть меньше 1/50 атмосферного давления. Практически мы предполагаем работать при давлении около 0,01 атмосферы, т.е. в условиях хорошего вакуума. Расчет показывает, что для получения продукта, обогащенного до концентрации в 90 % легким изотопом (такая концентрация достаточна для получения взрывчатого вещества), нужно соединить в каскад около 2 000 таких ступеней. В проектируемой и частично изготовленной нами машине рассчитывается получить 75-100 г урана-235 в сутки. Установка будет состоять приблизительно из 80-100 «колонн», в каждой из которых будет смонтировано 20-25 ступеней».

Ниже приведен документ — доклад Берии Сталину о подготовке первого атоиного взрыва. Внизу дана небольшая справка о наработанных ядерных материалах к началу лета 1949-го года.

И вот теперь сами представьте – 2000 здоровенных установок, ради каких-то 100 грамм! Ну а куда деваться-то, бомбы ведь нужны. И стали строить заводы, и не просто завода, а целые города. И ладно только города, электричества эти диффузионные заводы требовали столько, что приходилось строить рядом отдельные электростанции.

В СССР Первая очередь Д-1 комбината №813, была рассчитана на суммарный выпуск 140 граммов 92-93 %-ного урана-235 в сутки на 2-х идентичных по мощности каскадах из 3100 ступеней разделения. Под производство отводился недостроенный авиационный завод в поселке Верх-Нейвинск, что в 60 км от Свердловска. Позже он превратился в Свердловск-44, а 813-й завод (на фото) в Уральский электрохимический комбинат – крупнейшее в мире разделительное производство.

И хотя технология диффузионного разделения, пусть и с большими технологическими трудностями, было отлажена, идея освоения более экономичного центрифужного процесса не сходила с повестки дня. Ведь если удастся создать центрифугу, то энергопотребление сократится от 20 до 50 раз!

Как устроена центрифуга?

Устроена она более чем элементарно и похожа на старую стиральную машину, работающую в режиме «отжим/сушка». В герметичном кожухе находится вращающийся ротор. В этот ротор подается газ (UF6) . За счет центробежной силы, в сотни тысяч раз превышающей поле тяготения Земли, газ начинает разделяться на «тяжелую» и «легкую» фракции. Легкие и тяжелые молекулы начинают группироваться в разных зонах ротора, но не в центре и по периметру, а в верху и в низу.

Это возникает из-за конвекционных потоков – крышка ротора имеет подогрев и возникает противоток газа. Вверху и в низу цилиндра установлены две небольших трубочки – заборника. В нижнею трубку попадает обедненная смесь, в верхнюю – смесь с большей концентрацией атомов 235U . Эта смесь попадает в следующую центрифугу, и так далее, пока концентрация 235-го урана не достигнет нужного значения. Цепочка центрифуг называется каскад.

Технические особенности.

Ну во первых скорость вращения — у современного поколения центрифуг она достигает 2000 об/сек (тут даже не знаю с чем сравнить…в 10 раз быстрее чем турбина в авиадвигателе)! И работает она без остановки ТРИ ДЕСЯТКА лет! Т.е. сейчас в каскадах вращаются центрифуги, включенные еще при Брежневе! СССР уже нет, а они все крутятся и крутятся. Не трудно подсчитать, что за свой рабочий цикл ротор совершает 2 000 000 000 000 (два триллиона) оборотов. И какой подшипник это выдержит? Да никакой! Нет там подшипников.

Сам ротор представляет из себя обыкновенный волчок, внизу у него прочная иголка, опирающаяся на корундовый подпятник, а верхний конец висит в вакууме, удерживаясь электромагнитным полем. Иголка тоже не простая, сделанная из обычной проволоки для рояльных струн, она закалена очень хитрым способом (каким – ГТ). Не трудно представить, что при такой бешеной скорости вращения, сама центрифуга должна быть не просто прочной, а сверхпрочной.

Вспоминает академик Иосиф Фридляндер: «Трижды вполне расстрелять могли. Однажды, когда мы уже получили Ленинскую премию, случилась крупная авария, у центрифуги отлетела крышка. Куски разлетелись, разрушили другие центрифуги. Поднялось радиоактивное облако. Пришлось всю линию останавливать — километр установок! В Средмаше центрифугами командовал генерал Зверев, до атомного проекта он работал в ведомстве Берии. Генерал на совещании сказал: «Положение критическое. Под угрозой оборона страны. Если мы быстро не выправим положение, для вас повторится 37-й год». И сразу совещание закрыл. Придумали мы тогда совершенно новую технологию с полностью изотропной равномерной структурой крышек, но требовались очень сложные установки. С тех пор именно такие крышки и производятся. Никаких неприятностей больше не было. В России 3 обогатительных завода, центрифуг многие сотни тысяч.»
На фото: испытания первого поколения центрифуг

Корпуса роторов тоже поначалу были металлические, пока на смену им не пришел… углепластик. Легкий и особопрочный на разрыв, он является идеальным материалом для вращающегося цилиндра.

Вспоминает Генеральный директор УЭХК (2009-2012) Александр Куркин: «Доходило до смешного. Когда испытывали и проверяли новое, более «оборотистое» поколение центрифуг, один из сотрудников не стал дожидаться полной остановки ротора, отключил ее из каскада и решил перенести на руках на стенд. На вместо движения вперед, как не упирался, он с этим цилиндром в обнимку, стал двигаться назад. Так мы воочию убедились, что земля вращается, а гироскоп, это великая сила.»

Кто изобрел?

О, это загадка, погружённая в тайну и укутанная неизвестностью. Тут вам и немецкие плененные физики, ЦРУ, офицеры СМЕРШа и даже сбитый летчик-шпион Пауэрс. А вообще принцип газовой центрифуги описан еще в конце 19-го века.

Ещё на заре Атомного проекта инженер Особого конструкторского бюро Кировского завода Виктор Сергеев предлагал центрифужный метод разделения, но сначала его идею коллеги не одобряли. Параллельно над созданием разделительной центрифуги в специальном НИИ­-5 в Сухуми бились учёные из побеждённой Германии: доктор Макс Штеенбек, который при Гитлере работал ведущим инженером Siemens, и бывший механик «Люфтваффе», выпускник Венского университета Гернот Циппе. Всего в группу входило около 300 «вывезенных» физиков.

Вспоминает генеральный директор ЗАО «Центротех-СПб» ГК «Росатом» Алексей Калитеевский: «Наши специалисты пришли к выводу, что немецкая центрифуга абсолютно непригодна для промышленного производства. В аппарате Штеенбека не было системы передачи частично обогащённого продукта в следующую ступень. Предлагалось охлаждать концы крышки и замораживать газ, а потом его разморозить, собрать и пустить в следующую центрифугу. То есть, схема неработоспособная. Однако в проекте было несколько очень интересных и необычных технических решений. Эти «интересные и необычные решения» были соединены с результатами, полученными советскими учёными, в частности с предложениями Виктора Сергеева. Условно говоря, наша компактная центрифуга - на треть плод немецкой мысли, а на две трети - советской». Кстати, когда Сергеев приезжал в Абхазию и высказывал тем же Штеенбеку и Циппе свои мысли по поводу отбора урана, Штеенбек и Циппе отмахнулись от них, как от нереализуемых.

Итак что же придумал Сергеев.

А предложение Сергеева заключалось в создании отборников газа в виде трубок Пито. Но доктор Штеенбек, съевший зубы, как он считал, на этой теме, проявил категоричность: «Они станут тормозить поток, вызывать турбулентность, и никакого разделения не будет!» Спустя годы, работая над мемуарами, он об этом пожалеет: «Идея, достойная того, чтобы исходить от нас! Но мне она в голову не приходила…».

Позже, оказавшись за пределами СССР Штеенбек центрифугами больше не занимался. А вот Геронт Циппе перед отъездом в Германию имел возможность ознакомиться с опытным образцом центрифуги Сергеева и гениально простым принципом ее работы. Оказавшись на Западе, «хитрый Циппе», как его нередко называли, запатентовал конструкцию центрифуги под своим именем (патент №1071597 от 1957 года, заявлен в 13 странах). В 1957 году, переехав в США, Циппе построил там работающую установку, воспроизведя по памяти опытный образец Сергеева. И назвал ее, отдадим должное, «Русской центрифугой» (на фото).

Кстати, русская инженерная мысль проявила себя и в многих других случаях. В качестве примера можно привести элементарный аварийный запорный клапан. Там нет датчиков, детектеров и электронных схем. Там есть только самоварный краник, который своим лепестком касается станины каскада. Если что не так, и центрифуга меняет свое положение в пространстве, он просто поворачивается и закрывает входную магистраль. Это как в анекдоте про американскую ручку и русский карандаш в космосе.

Наши дни

На этой неделе автор этих строк присутствовал на знаменательном событии – закрытии российского офиса наблюдателей министерства энергетики США по контракту ВОУ-НОУ . Эта сделка (высокообогащенный уран – низкообогащенный уран) была, да и остается крупнейшим соглашением в области ядерной энергетики между Россией и Америкой. По условиям контракта российские атомщики переработали 500 тонн нашего оружейного (90%) урана в топливный (4%) ГФУ для американских АЭС. Доходы за 1993-2009 годы составили 8,8 млрд. долларов США. Это стало логическим исходом технологического прорыва наших ядерщиков в области разделения изотопов, сделанного в послевоенные годы.
На фото: каскады газовых центрифуг в одном из цехов УЭХК. Здесь их около 100 000 шт.

Благодаря центрифугам мы получили тысячи тонн относительно дешевого, как военного, так и коммерческого продукта. Атомная отрасль, одна из немногих оставшихся (военная авиация, космос), где Россия удерживает непререкаемое первенство. Одних только зарубежных заказов на десять лет вперед (с 2013 года по 2022 год), портфель «Росатома» без учета контракта ВОУ-НОУ составляет 69,3 миллиарда долларов. В 2011 году он перевалил за 50 миллиардов…
На фото склад контейнеров с ГФУ на УЭХК.

28 сентября 1942 г. было принято постановление Государственного Комитета Обороны № 2352сс «Об организации работ по урану». Эта дата считается официальным началом отсчета истории атомной отрасли России.

Каж­дый день мы исполь­зуем элек­три­че­сто и не заду­мы­ва­емся над тем, как оно про­из­во­дится и как оно к нам попало. А тем не менее это одна из самых важ­ных частей совре­мен­ной циви­ли­за­ции. Без элек­три­че­ства не было бы ничего - ни света, ни тепла, ни движения.

Все знают про то, что элек­три­чевто выра­ба­ты­ва­ется на элек­тро­стан­циях, в том числе и на атом­ных. Сердце каж­дой АЭС - это ядер­ный реак­тор . Именно его мы будем раз­би­рать в этой статье.

Ядер­ный реак­тор , устрой­ство в кото­ром про­ис­те­кает управ­ля­е­мая цеп­ная ядер­ная реак­ция с выде­ле­нием тепла. В основ­ном ти устрой­ства исполь­зу­ются для выра­ботки элек­тро­энер­гии и в каче­стве при­вода боль­ших кораб­лей. Для того, чтобы пред­ста­вить себе, мощ­ность и эко­но­мич­ность ядер­ных реак­то­ров можно при­ве­сти при­мер. Там где сред­нему ядер­ному реак­тору потре­бу­ется 30 кило­грамм урана, сред­ней ТЭЦ потре­бу­ется 60 ваго­нов угля или 40 цистерн мазута.

Про­об­раз ядер­ного реак­тора был построен в декабре 1942 года в США под руко­вод­ством Э. Ферми. Это была так назы­ва­е­мая “Чикаг­ская стопка”. Chicago Pile (впо­след­ствии слово “Pile” наряду с дру­гими зна­че­ни­ями стало обо­зна­чать ядер­ный реак­тор). Такое назва­ние дали ему из-за того, что он напо­ми­нал собой боль­шую стопку гра­фи­то­вых бло­ков, поло­жен­ных один на другой.

Между бло­ками была поме­щены шаро­об­раз­ные “рабо­чие тела”, из при­род­ного урана и его диоксида.

В СССР пер­вый реак­тор был построен под руко­вод­ством ака­де­мика И. В. Кур­ча­това. Реак­тор Ф-1 был зара­бо­тал 25 декабря 1946 г. Реак­тор был в форме шара, имел в диа­метре около 7,5 мет­ров. Он не имел системы охла­жде­ния, поэтому рабо­тал на очень малых уров­нях мощности.


Иссле­до­ва­ния про­дол­жи­лись и в 27 июня 1954 года всту­пила в строй пер­вая в мире атом­ная элек­тро­стан­ция мощ­но­стью 5 МВт в г. Обнинске.

Прин­цип дей­ствия атом­ного реактора.

При рас­паде урана U 235 про­ис­хо­дит выде­ле­ние тепла, сопро­вож­да­е­мое выбро­сом двух-трех ней­тро­нов. По ста­ти­сти­че­ским дан­ным - 2,5. Эти ней­троны стал­ки­ва­ются с дру­гими ато­мами урана U 235 . При столк­но­ве­нии уран U 235 пре­вра­ща­ется в неста­биль­ный изо­топ U 236 , кото­рый прак­ти­че­ски сразу же рас­па­да­ется на Kr 92 и Ba 141 + эти самые 2–3 ней­трона. Рас­пад сопро­вож­да­ется выде­ле­нием энер­гии в виде гамма излу­че­ния и тепла.

Это и назы­ва­ется цеп­ная реак­ция. Атомы делятся, коли­че­ство рас­па­дов уве­ли­чи­ва­ется в гео­мет­ри­че­ской про­грес­сии, что в конеч­ном итоге при­во­дит к мол­ние­нос­ному, по нашим мер­кам высво­бож­де­нию огром­ного коли­че­ства энер­гии - про­ис­хо­дит атом­ный взрыв, как послед­ствие неуправ­ля­е­мой цеп­ной реакции.

Однако в ядер­ном реак­торе мы имеем дело с управ­ля­е­мой ядер­ной реак­цией. Как такая ста­но­вится воз­мож­ной - рас­ска­зано дальше.

Устрой­ство ядер­ного реактора.

В насто­я­щее время суще­ствует два типа ядер­ных реак­то­ров ВВЭР (водо-водяной энер­ге­ти­че­ский реак­тор) и РБМК (реак­тор боль­шой мощ­но­сти каналь­ный). Отли­чие в том, что РБМК - кипя­щий реак­тор, а ВВЭР исполь­зует воду под дав­ле­нием в 120 атмосфер.

Реак­тор ВВЭР 1000. 1 - при­вод СУЗ; 2 - крышка реак­тора; 3 - кор­пус реак­тора; 4 - блок защит­ных труб (БЗТ); 5 - шахта; 6 - выго­родка актив­ной зоны; 7 - топ­лив­ные сборки (ТВС) и регу­ли­ру­ю­щие стержни;

Каж­дый ядер­ный реак­тор про­мыш­лен­ного типа пред­став­ляет собой котел, сквозь кото­рый про­те­кает теп­ло­но­си­тель. Как пра­вило это обыч­ная вода (ок. 75% в мире), жид­кий гра­фит (20%) и тяже­лая вода (5%). В экс­пе­ри­мен­таль­ных целях исполь­зо­вался бери­лий и пред­по­ла­гался углеводород.

ТВЭЛ - (теп­ло­вы­де­ля­ю­щий эле­мент). Это стержни в цир­ко­ни­е­вой обо­лочке с нио­бий­ным леги­ро­ва­нием, внутри кото­рых рас­по­ло­жены таб­летки из диок­сида урана.

ТВЭЛы в кас­сете выде­лены зеленым.


Топ­лив­ная кас­сета в сборе.

Актив­ная зона реак­тора состоит из сотен кас­сет, постав­лен­ных вер­ти­кально и объ­еди­нен­ных вме­сте метал­ли­че­ской обо­лоч­кой - кор­пу­сом, игра­ю­щим также роль отра­жа­те­лем ней­тро­нов. Среди кас­сет, с регу­ляр­ной часто­той встав­лены управ­ля­ю­щие стержни и стержни ава­рий­ной защиты реак­тора, кото­рые в слу­чае пере­грева при­званы заглу­шить реактор.

При­ве­дем в при­мер дан­ные по реак­тору ВВЭР-440:

Управ­ля­ю­щие могут пере­ме­щаться вверх и вниз погру­жа­ясь или наобо­рот, выходя из актив­ной зоны, где реак­ция идет интен­сив­нее всего. Это обес­пе­чи­вают мощ­ные элек­тро­мо­торы, в сово­куп­но­сти с систе­мой управления.Стержни ава­рий­ной защиты при­званы заглу­шить реак­тор в слу­чает нештат­ной ситу­а­ции, упав в актив­ную зону и погло­тив больше коли­че­ство сво­бод­ных нейтронов.

Каж­дый реак­тор имеет крышку, через кото­рую про­из­во­дится погрузка и выгрузка отра­бо­тав­ших и новых кассет.

Поверх кор­пуса реак­тора обычно уста­нав­ли­ва­ется теп­ло­изо­ля­ция. Сле­ду­ю­щим барье­ром идет био­ло­ги­че­ская защита. Это как пра­вило желе­зо­бе­тон­ный бун­кер, вход в кото­рый закры­ва­ется шлю­зо­вой каме­рой с гер­ме­тич­ными дверьми. Био­ло­ги­че­ская защита при­звана не выпу­стить в атмо­сферу радио­ак­тив­ный пар и куски реак­тора, если все таки про­изой­дет взрыв.

Ядер­ный взрыв в совре­мен­ных реак­тора крайне мало воз­мо­жен. Потому что топ­ливо доста­точно мало обо­га­щено, и раз­де­лено на ТВЕЛы. Даже если рас­пла­вится актив­ная зона, топ­ливо не смо­жет настолько активно про­ре­а­ги­ро­вать. Маси­мум что может про­изойти - теп­ло­вой взрыв как на Чер­но­быле, когда дав­ле­ние в реак­торе достигло таких вели­чин, что метал­ли­че­ский кор­пус про­сто разо­рвало, а крышка реак­тора, весом в 5000 тонн сде­лала пры­жок с пере­во­ро­том, про­бив крышу реак­тор­ного отсека и выпу­стив пар наружу. Если бы чер­но­быль­ская АЭС была осна­щена пра­виль­ной био­ло­ги­че­ской защи­той, напо­до­бие сего­дняш­него сар­ко­фага, то ката­строфа обо­шлась чело­ве­че­ству намного дешевле.

Работа атом­ной электростанции.

Если в двух сло­вах, то рабо­боа выгля­дит так.

Атом­ная элек­тро­стан­ция. (Кликабельно)

После поступ­ле­ния в актив­ную зону реак­тора с помо­щью насо­сов, вода нагре­ва­ется с 250 до 300 гра­ду­сов и выхо­дит с “дру­гой сто­роны” реак­тора. Это назы­ва­ется пер­вым кон­ту­ром. После чего направ­ля­ется в теп­л­об­мен­ник, где встре­ча­ется со вто­рым кон­ту­ром. После чего пар под дав­ле­нием посту­пает на лопатки тур­бин. Тур­бины выра­ба­ты­вают электричество.

У ядерных реакторов одна задача: расщепить атомы в результате контролируемой реакции и использовать выделенную энергию, чтобы генерировать электрическую мощность. На протяжении многих лет реакторы рассматривались и как чудо, и как угроза.

Когда первый коммерческий реактор США вошел в строй в Shippingport, штат Пенсильвания, в 1956 году, эта технология была расценена как источник энергии будущего, а некоторые полагали, что реакторы сделают выработку электричества слишком дешевой. Сейчас во всем мире построено 442 атомных реактора, около четверти из этих реакторов находятся в США. Мир пришел в зависимость от ядерных реакторов, вырабатывающих 14 процентов электроэнергии . Футуристы фантазировали даже об атомных автомобилях.

Когда в 1979 году на реакторе Блок 2 на электростанции Three Mile Island в штате Пенсильвания возникла неисправность системы охлаждения и, как следствие, частичное расплавление его радиоактивного топлива, теплые чувства по поводу реакторов радикально изменились. Несмотря на то, что было проведено блокирование разрушенного реактора и не возникло никакого серьезного радиоактивного излучения, многие люди начали рассматривать реакторы как слишком сложные и уязвимые, с потенциально катастрофическими последствиями. Люди также обеспокоились радиоактивными отходами из реакторов. В результате, строительство новых атомных станций в Соединенных Штатах остановилось. Когда более серьезная авария произошла на Чернобыльской АЭС в Советском Союзе в 1986 году, ядерная энергетика казалась обреченной.

Но в начале 2000-х, ядерные реакторы начали возвращаться, благодаря растущей потребности в энергии и уменьшении поставок ископаемого топлива, а также растущей обеспокоенности по поводу изменения климата в результате выбросов двуокиси углерода

Но в марте 2011 года случился еще один кризис — на этот раз от землетрясения сильно пострадала Фукусима 1 — атомная электростанция в Японии.

Использование ядерной реакции

Попросту говоря, в ядерном реакторе расщепляются атомы и высвобождают энергию, которая держит их части вместе.

Если вы подзабыли физику средней школы, мы напомним вам, как ядерное деление работает. Атомы похожи на крошечные солнечные системы, с ядром, вроде Солнца , и электронами, как планетами на орбите вокруг него. Ядро состоит из частиц, называемых протонами и нейтронами, которые связаны друг с другом. Силу, которая связывает элементы ядра — трудно даже представить. Она во много миллиардов раз сильнее, чем сила земного тяготения. Несмотря на эту огромную силу, можно расщепить ядро — стреляя по нему нейтронами. Когда это будет сделано, выделится много энергии. Когда атомы распадаются, их частицы врезаются в близлежащие атомы, расщепляя и их, а те, в свою очередь следующие, следующие и следующие. Возникает, так называемая, цепная реакция .

Уран, элемент с большими атомами, идеально подходит для процесса расщепления, потому, что сила, связывающая частицы его ядра, является относительно слабой по сравнению с другими элементами. Ядерные реакторы используют определенный изотоп, называемый У ран- 235 . Уран-235 является редким в природе, руда из урановых рудников содержит лишь около 0,7% Урана-235. Вот почему реакторы используют обогащенный У ран , который создается путем выделения и концентрирования Урана-235 посредством процесса диффузии газа.

Процесс цепной реакции можно создать в атомной бомбе, подобной тем, что были сброшены на японские города Хиросиму и Нагасаки во время Второй мировой войны. Но в ядерном реакторе цепная реакция контролируется вставкой управляющих стержней, изготовленных из материалов, таких, как кадмий, гафний или бор, которые поглощают часть нейтронов. Это по-прежнему позволяет процессу деления выделять достаточно энергии, чтобы нагреть воду до температуры около 270 градусов Цельсия и превратить ее в пар, который используется для вращения турбин электростанции и генерирования электричества. В принципе, в этом случае контролируемая ядерная бомба работает вместо угля, создавая электроэнергию, за исключением того, что энергия для вскипания воды происходит от расщепления атомов, вместо сжигания углерода.

Компоненты ядерных реакторов

Есть несколько различных типов ядерных реакторов, но все они имеют некоторые общие характеристики. Все они имеют запас радиоактивных топливных гранул — обычно оксида урана, которые расположены в трубах, чтобы сформировать топливные стержни в активной зон е реактора .

Реактор также имеет ранее упомянутые управляющи е стержн и — из поглощающего нейтроны материала, такого как кадмий, гафний или бор, которые вставляются для контроля или остановки реакции.

Реактор также имеет модератор , вещество, которое замедляет нейтроны и помогает контролировать процесс деления. Большинство реакторов в Соединенных Штатах используют обычную воду, но реакторы в других странах иногда используют графит, или тяжел ую вод у , в которой водород заменен дейтерием, изотопом водорода с одним протоном и одним нейтроном. Еще одной важной частью системы является охлаждающ ая жидкост ь , как правило, обычная вода, которая поглощает и передает тепло от реактора для создания пара для вращения турбины и охлаждает зону реактора так, чтобы он не достиг температуры, при которой уран расплавится (около 3815 градусов по Цельсию).

Наконец, реактор заключен в оболочк у , большую, тяжелую конструкцию, толщиной обычно несколько метров из стали и бетона, которая держит радиоактивные газы и жидкости внутри, где они не могут никому навредить.

Есть целый ряд различных конструкций реакторов в использовании, но один из самых распространенных — водо-водяной энергетический реактор (ВВЭР) . В таком реакторе, вода нагнетается в контакт с сердечником, а затем остается там под таким давлением, что не может превратиться в пар. Эта вода затем в парогенераторе вступает в контакт с водой, поданной без давления, которая и превращается в пар, вращающий турбины. Есть также конструкция реактора большой мощности канального типа (РБМК) с одним водяным контуром и реактор на быстрых нейтронах с двумя натриевыми и одним водяным контуром.

Насколько безопасен ядерный реактор?

Ответить на этот вопрос довольно сложно и это зависит от того, кого вы спросите и как вы понимаете «в безопасности». Вас беспокоит излучение или радиоактивные отходы, образующиеся в реакторах? Или вы больше беспокоитесь о возможности катастрофического несчастного случая? Какую степень риска вы считаете приемлемым компромиссом для выгоды ядерной энергетики? И в какой степени вы доверяете правительству и атомной энергетике?

«Радиация» является веским аргументом, в основном, потому, что мы все знаем, что большие дозы радиации, например, от взрыва ядерной бомбы, могут убить многие тысячи людей.

Сторонники ядерной энергетики, однако, отмечают, что все мы регулярно подвергаются облучению из различных источников, в том числе космическими лучами и естественной радиацией, испускаемой Землей . Среднегодовая доза облучения составляет около 6,2 миллизивертов (мЗв), половина из него из природных источников, а половина из искусственных источников, начиная от рентгена грудной клетки, детекторов дыма и светящихся часовых циферблатов. Сколько мы получаем радиации от ядерных реакторов? Лишь незначительная часть процента от нашего типичного годового облучения — 0,0001 мЗв.

В то время как все атомные станции неизбежно допускают утечку небольшого количества радиации, комиссии-регуляторы держат операторов АЭС в жестких требованиях. Они не могут подвергать людей, живущих вокруг станции, более, чем 1 мЗв излучения в год, а рабочие на заводе имеют порог 50 мЗв в год. Это может показаться много, но, по словам Комиссии по ядерному регулированию, нет никаких медицинских доказательств того, что годовые дозы излучения ниже 100 мЗв создают какие-либо риски для здоровья человека.

Но важно отметить, что не все согласны с такой благодушной оценкой радиационных рисков. Например, организация «Врачи за социальную ответственность», давний критик атомной промышленности, изучали детей, живущих вокруг немецких АЭС. Исследование показало, что люди, живущие в пределах 5 км от станций, имели двойной риск заражения лейкозом в сравнении с теми, кто живет дальше от АЭС.

Ядерные отходы реактора

Ядерная энергетика рекламируется ее сторонниками, как «чистая» энергия, потому, что реактор не выбрасывает большие объемы парниковых газов в атмосферу, в сравнении с угольными электростанциями. Но критики указывают на другую экологическую проблему — утилизацию ядерных отходов. Некоторые из отходов отработанного топлива из реакторов, по-прежнему выделяют радиоактивность. Другой ненужный материал, который должен быть сохранен, является радиоактивными отходами высокого уровня , жидким остатком от переработки отработанного топлива, в котором частично остался уран. Прямо сейчас большинство этих отходов хранится локально на атомных электростанциях в прудах воды, которые поглощают часть оставшегося тепла, произведенного отработанным топливом и помогают оградить рабочих от радиоактивного облучения

Одна из проблем, с отработавшим ядерным топливом в том, что оно было изменено в процессе деления.Когда большие атомы урана расщепляются, они создают побочные продукты — радиоактивные изотопы нескольких легких элементов, таких как Цезий-137 и Стронций-90, называемые продукты деления . Они горячие и очень радиоактивные, но в конце концов, за период в 30 лет, они распадаются на менее опасные формы. Этот период для них называется п ериод ом полураспада . Для других радиоактивных элементов период полураспада будет разным. Кроме того, некоторые атомы урана также захватывают нейтроны, образуя более тяжелые элементы, такие как Плутоний. Эти трансурановые элементы не создают столько тепла или проникающего излучения как продукты деления, но они требуют намного дольше времени, чтобы распадаться. Плутоний-239, например, имеет период полураспада 24000 лет.

Эти радиоактивны е отход ы высокого уровня из реакторов являются опасными для человека и других форм жизни потому, что они могут выделять огромную, смертельную дозу радиации даже от короткой экспозиции. Через десять лет после удаления остатков топлива из реактора, например, они испускают в 200 раз больше радиоактивности в час, чем это требуется, чтобы убить человека. И если отходы оказываются в грунтовых водах или реках, они могут попадать в пищевую цепь и поставить под угрозу большое количество людей.

Поскольку отходы так опасны, многие люди находятся в сложном положении. 60000 тонн отходов находится на атомных станциях, близких к крупным городам. Но найти безопасное место, чтобы хранить отходы — очень нелегко.

Что может пойти не так с ядерным реактором?

С государственными регуляторами, оглядываясь на свой опыт, инженеры потратили много времени на протяжении многих лет проектируя реакторы для оптимальной безопасности. Просто так они не ломаются, работают должным образом и имеют резервные меры безопасности, если что-то происходит не по плану. В результате, год за годом, атомные станции, кажутся довольно безопасными по сравнению, скажем, с воздушным транспортом , который регулярно убивает от 500 до 1100 человек в год во всем мире.

Тем не менее, ядерные реакторы настигают крупные поломки. По международной шкале ядерных событий, в которой несчастные случаи с реакторами оцениваются от 1 до 7, было пять аварий с 1957 года, которые оценили от 5 до 7.

Худшим кошмаром является поломка системы охлаждения, что приводит к перегреву топлива. Топливо превращается в жидкость, а затем прожигает защитную оболочку, извергая радиоактивное излучение. В 1979 году Блок 2 на АЭС Three Mile Island (США) был на грани этого сценария. К счастью, хорошо продуманная система сдерживания была достаточно сильна, чтобы остановить радиацию от выхода.

СССР повезло меньше. Тяжелая ядерная авария случилась в апреле 1986 года на 4-м энергоблоке на Чернобыльской АЭС. Это было вызвано сочетанием системных поломок, конструктивных недостатков и плохо обученным персоналом. Во время обычной проверки, реакция вдруг усилилась, а контрольные стержни заклинило, предотвращая аварийное отключение. Внезапное накопление пара вызвало два тепловых взрыва, выбрасывая графитовый замедлитель реактора в воздух. В отсутствии чего-либо для охлаждения топливных стержней реактора, начался их перегрев и полное разрушение в результате которого топливо приняло жидкий вид. Погибло много работников станции и ликвидаторов аварии. Большое количество излучения распространилось на площади 323 749 квадратных километров. Количество смертей, вызванных радиацией, до сих пор неясно, но Всемирная организация здравоохранения утверждает, что это, возможно, вызвало 9000 смертей от рака.

Создатели ядерных реакторов дают гарантии, основанные на вероятностной оценк е , в которой они пытаются сбалансировать потенциальный вред от случая с вероятностью, с которой он на самом деле происходит. Но некоторые критики говорят, что они должны готовиться, вместо этого, для редких, самых неожиданных, но очень опасных событий. Показательный пример — авария в марте 2011 года на атомной станции Фукусима 1 в Японии. Станция, по сообщениям, была разработана, чтобы выдерживать сильное землетрясение, но не такое катастрофическое, как землетрясение в 9,0 баллов, которое подняло 14-метровую волну цунами над дамбами, призванными противостоять 5,4-метровой волне. Натиск цунами уничтожил резервные дизель генераторы, которые предназначались для питания системы охлаждения шести реакторов АЭС, в случае отключения электричества.Таким образом, даже после того, как регулирующие стержни реакторов Фукусима прекратили реакцию деления, все еще ​​горячее топливо позволило температуре опасно подняться внутри разрушенных реакторов.

Японские чиновники прибегли к крайней мере — затоплению реакторов огромным количеством морской воды с добавкой борной кислоты, что смогло предотвратить катастрофу, но разрушило реакторное оборудование. В конце концов, с помощью пожарных машин и барж, японцы оказались в состоянии перекачивать пресную воду в реакторы. Но к тому времени мониторинг уже показал тревожные уровни радиации в окружающей земле и воде. В одной деревне в 40 км от этой АЭС, радиоактивный элемент Цезий-137, оказался на уровнях гораздо более высоких, чем после Чернобыльской катастрофы, что вызвало сомнение о возможности проживания людей в этой зоне.

Просмотров