Отработавшее ядерное топливо тепловых реакторов. Реакторы на быстрых нейтронах и их роль в становлении "большой" атомной энергетики

December 25th, 2013

Этап физического пуска реактора БН-800 на быстрых нейтронах началсясегодня на Белоярской АЭС, сообщил РИА Новости представитель Росэнергоатома.

В ходе этого этапа, который может продлиться несколько недель, реактор будет заполнен жидким натрием и затем в него будет загружено ядерное топливо. Представитель Росэнергоатома пояснил, что по завершении физического пуска энергоблок будет признан ядерной установкой.

Энергоблок №4 с реактором БН-800 Белоярской атомной электростанции (БАЭС) выйдет на полную мощность к концу 2014 года, сообщил журналистам в среду первый замгендиректора госкорпорации «Росатом» Александр Локшин.

«На полную мощность блок должен выйти к концу года», - сказал он, уточнив, что речь идет о конце 2014 года.

По его словам, в настоящее время идет заполнение контура натрием, окончание физического пуска планируется к середине апреля. По его словам, энергоблок готов к физическому пуску на 99,8%. Как отметил гендиректор ОАО «Концерн Росэнергоатом» Евгений Романов, в конце лета намечен энергопуск объекта.

Энергоблок с реактором БН-800 является развитием уникального реактора БН-600 на Белоярской АЭС, который находится около 30 лет в опытно-промышленной эксплуатации. Технологиями реакторов на быстрых нейтронах в мире обладают очень небольшое количество стран, и Россия является мировым лидером в этом направлении.

Давайте узнаем о нем подробнее …

Реакторный (центральный) зал БН-600

В 40 км от Екатеринбурга, посреди красивейших уральских лесов расположен городок Заречный. В 1964 году здесь была запущена первая советская промышленная АЭС – Белоярская (с реактором АМБ-100 мощностью 100 МВт). Сейчас Белоярская АЭС осталась единственной в мире, где работает промышленный энергетический реактор на быстрых нейтронах – БН-600

Представьте себе кипятильник, который испаряет воду, а образовавшийся пар крутит турбогенератор, вырабатывающий электроэнергию. Примерно так в общих чертах и устроена атомная электростанция. Только «кипятильник» – это энергия атомного распада. Конструкции энергетических реакторов могут быть различными, но по принципу работы их можно разделить на две группы – реакторы на тепловых нейтронах и реакторы на быстрых нейтронах.

В основе любого реактора лежит деление тяжелых ядер под действием нейтронов. Правда, есть и существенные отличия. В тепловых реакторах уран-235 делится под действием низкоэнергетических тепловых нейтронов, при этом образуются осколки деления и новые нейтроны, имеющие высокую энергию (так называемые быстрые нейтроны). Вероятность поглощения ядром урана-235 (с последующим делением) теплового нейтрона гораздо выше, чем быстрого, поэтому нейтроны нужно замедлить. Это делается с помощью замедлителей– веществ, при столкновениях с ядрами которых нейтроны теряют энергию.

Топливом для тепловых реакторов обычно служит уран невысокого обогащения, в качестве замедлителя используются графит, легкая или тяжелая вода, а теплоносителем является обычная вода. По одной из таких схем устроены большинство функционирующих АЭС.

Быстрые нейтроны, образующиеся в результате вынужденного деления ядер, можно использовать и без какого-либо замедления. Схема такова: быстрые нейтроны, образовавшиеся при делении ядер урана-235 или плутония-239, поглощаются ураном-238 с образованием (после двух бета-распадов) плутония-239. Причем на 100 разделившихся ядер урана-235 или плутония-239 образуется 120–140 ядер плутония-239. Правда, поскольку вероятность деления ядер быстрыми нейтронами меньше, чем тепловыми, топливо должно быть обогащенным в большей степени, чем для тепловых реакторов. Кроме того, отводить тепло с помощью воды здесь нельзя (вода– замедлитель), так что приходится использовать другие теплоносители: обычно это жидкие металлы и сплавы, от весьма экзотических вариантов типа ртути (такой теплоноситель был использован в первом американском экспериментальном реакторе Clementine) или свинцово-висмутовых сплавов (использовались в некоторых реакторах для подводных лодок– в частности, советских лодок проекта 705) до жидкого натрия (самый распространенный в промышленных энергетических реакторах вариант). Реакторы, работающие по такой схеме, называются реакторами на быстрых нейтронах. Идея такого реактора была предложена в 1942 году Энрико Ферми. Разумеется, самый горячий интерес проявили к этой схеме военные: быстрые реакторы в процессе работы вырабатывают не только энергию, но и плутоний для ядерного оружия. По этой причине реакторы на быстрых нейтронах называют также бридерами (от английского breeder– производитель).

Зигзаги истории

Интересно, что история мировой атомной энергетики началась именно с реактора на быстрых нейтронах. 20 декабря 1951 года в Айдахо заработал первый в мире энергетический реактор на быстрых нейтронах EBR-I (Experimental Breeder Reactor) электрической мощностью всего 0,2 МВт. Позднее, в 1963 году, недалеко от Детройта была запущена АЭС с реактором на быстрых нейтронах Fermi – уже мощностью около 100 МВт (в 1966 году там произошла серьезная авария с расплавлением части активной зоны, но без каких-либо последствий для окружающей среды или людей).

В СССР этой темой с конца 1940-х годов занимался Александр Лейпунский, под руководством которого в Обнинском физико-энергетическом институте (ФЭИ) были разработаны основы теории быстрых реакторов и построены несколько экспериментальных стендов, что позволило изучить физику процесса. В результате проведенных исследований в 1972 году вступила в строй первая советская АЭС на быстрых нейтронах в городе Шевченко (ныне Актау, Казахстан) с реактором БН-350 (изначально обозначался БН-250). Она не только вырабатывала электроэнергию, но и использовала тепло для опреснения воды. Вскоре были запущены французская АЭС с быстрым реактором Phenix (1973) и британская с PFR (1974), обе мощностью 250 МВт.

Однако в 1970-х в атомной энергетике стали доминировать реакторы на тепловых нейтронах. Обусловлено это было различными причинами. Например, тем, что быстрые реакторы могут вырабатывать плутоний, а значит, это может привести к нарушению закона о нераспространении ядерного оружия. Однако скорее всего основным фактором было то, что тепловые реакторы были более простыми и дешевыми, их конструкция отрабатывалась на военных реакторах для подводных лодок, да и сам уран был очень дешев. Вступившие в строй после 1980 года промышленные энергетические реакторы на быстрых нейтронах во всем мире можно пересчитать по пальцам одной руки: это Superphenix (Франция, 1985–1997), Monju (Япония, 1994–1995) и БН-600 (Белоярская АЭС, 1980), который в настоящий момент является единственным в мире действующим промышленным энергетическим реактором.

Строительство БН-800

Они возвращаются

Однако в настоящее время к АЭС с реакторами на быстрых нейтронах вновь приковано внимание специалистов и общественности. Согласно оценкам, сделанным Международным агентством по атомной энергии (МАГАТЭ) в 2005 году, общий объем разведанных запасов урана, расходы на добычу которого не превышают $130 за килограмм, составляет примерно 4,7 млн тонн. Согласно оценкам МАГАТЭ, этих запасов хватит на 85 лет (если взять за основу потребность в уране для производства электроэнергии по уровню 2004 года). Содержание изотопа 235, который «сжигают» в тепловых реакторах, в природном уране – всего 0,72%, остальное составляет «бесполезный» для тепловых реакторов уран-238. Однако, если перейти к использованию реакторов на быстрых нейтронах, способных «сжигать» уран-238, этих же запасов хватит более чем на 2500 лет!

Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.

Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.

Гладко только на бумаге

Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии – от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).

«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, – объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. – Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию’. С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, – оно лишь чуть выше атмосферного».

По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы – как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».

«Проблемы действительно были одни и те же, – добавляет директор Белоярской АЭС Николай Ошканов, – но вот решали их у нас и во Франции различными способами. Например, когда на Phenix погнулась головная часть одной из сборок, чтобы захватить и выгрузить ее, французские специалисты разработали сложную и довольно дорогую систему ‘видения’ сквозь слой натрия. А когда такая же проблема возникла у нас, один из наших инженеров предложил использовать видеокамеру, помещенную в простейшую конструкцию типа водолазного колокола,– открытую снизу трубу с поддувом аргона сверху. Когда расплав натрия был вытеснен, операторы с помощью видеосвязи смогли навести захват механизма, и гнутая сборка была успешно извлечена».

Быстрое будущее

«В мире не было бы такого интереса к технологии быстрых реакторов, если бы не успешная многолетняя эксплуатация нашего БН-600, – говорит Николай Ошканов.– Развитие атомной энергетики, на мой взгляд, в первую очередь связано с серийным производством и эксплуатацией именно быстрых реакторов. Только они позволяют вовлечь в топливный цикл весь природный уран и таким образом увеличить эффективность, а также в десятки раз уменьшить количество радиоактивных отходов. В этом случае будущее атомной энергетики будет действительно светлым».

Реактор на быстрых нейтронах БН-800 (вертикальный разрез)
Что у него внутри

Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями

370 топливных сборок образуют три зоны с различным обогащением по урану-235 – 17, 21 и 26% (изначально зон было только две, но, чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства).

Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) – трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой, и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части.

В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней – головная часть, за которую сборку захватывают при перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно.

Для управления реактором используется 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» – фотонейтронный источник (гамма-излучатель плюс бериллий).

Как устроен реактор БН-600

Реактор имеет интегральную компоновку, то есть в корпусе реактора расположена активная зона (1), а также три петли (2) первого контура охлаждения, каждая из которых имеет свой главный циркуляционный насос (3) и два промежуточных теплообменника (4). Теплоносителем служит жидкий натрий, который прокачивается через активную зону снизу вверх и разогревается с 370 до 550°С

Проходя через промежуточные теплообменники, он передает тепло натрию во втором контуре (5), который уже поступает в парогенераторы (6), где испаряет воду и перегревает пар до температуры 520°С (при давлении 130 атм). Пар подается на турбины поочередно в цилиндры высокого (7), среднего (8) и низкого (9) давления. Отработанный пар конденсируется за счет охлаждения водой (10) из пруда-охладителя и вновь поступает в парогенераторы. Три турбогенератора (11) Белоярской АЭС выдают 600 МВт электрической мощности. Газовая полость реактора заполнена аргоном под очень небольшим избыточным давлением (около 0,3 атм).

Перегрузка вслепую

В отличие от тепловых реакторов, в реакторе БН-600 сборки находятся под слоем жидкого натрия, поэтому извлечение отработавших сборок и установка на их место свежих (этот процесс называют перегрузкой) происходит в полностью закрытом режиме. В верхней части реактора расположены большая и малая поворотные пробки (эксцентричные относительно друг друга, то есть их оси вращения не совпадают). На малой поворотной пробке смонтирована колонна с системами управления и защиты, а также механизмом перегрузки с захватом типа цангового. Поворотный механизм снабжен «гидрозатвором» из специального легкоплавкого сплава. В нормальном состоянии он твердый, а для перезагрузки его разогревают до температуры плавления, при этом реактор остается полностью герметичным, так что выбросы радиоактивных газов практически исключены.

Процесс перегрузки одной сборки занимает до часа, перегрузка трети активной зоны (около 120 ТВС) занимает около недели (в три смены), такая процедура выполняется каждую микрокампанию (160 эффективных суток, в пересчете на полную мощность). Правда, сейчас выгорание топлива увеличили, и перегружается только четверть активной зоны (примерно 90 ТВС). При этом оператор не имеет непосредственной визуальной обратной связи и ориентируется только по показателям датчиков углов поворота колонны и захватов (точность позиционирования – менее 0,01 градуса), усилий извлечения и постановки. На работу механизма в целях безопасности накладываются определенные ограничения: например, нельзя одновременно освобождать две соседние ячейки, кроме того, при перегрузке все стержни управления и защиты должны находиться в активной зоне.

В 1983 г. на базе БН-600 предприятием был разработан проект усовершенствованного реактора БН-800 для энергоблока мощностью 880 МВт(э). В 1984 г. были начаты работы по сооружению двух реакторов БН-800 на Белоярской и новой Южно-Уральской АЭС. Последующая задержка сооружения этих реакторов была использована для доработки проекта с целью дальнейшего повышения его безопасности и улучшения технико-экономических показателей. Работы по сооружению БН-800 были возобновлены в 2006 г. на Белоярской АЭС (4-й энергоблок) и должны быть завершены в 2014 г.

Перед строящимся реактором БН-800 поставлены следующие важные задачи:

  • Обеспечение эксплуатации на MOX-топливе.
  • Экспериментальная демонстрация ключевых компонентов закрытого топливного цикла.
  • Отработка в реальных условиях эксплуатации новых видов оборудования и усовершенствованных технических решений, введенных для повышения показателей экономичности, надежности и безопасности.
  • Разработка инновационных технологий для будущих реакторов на быстрых нейтронах с жидкометаллическим теплоносителем:
    • испытания и аттестация перспективного топлива и конструкционных материалов;
    • демонстрация технологии выжигания минорных актинидов и трансмутации долгоживущих продуктов деления, составляющих наиболее опасную часть радиоактивных отходов атомной энергетики.

Ведётся разработка проекта усовершенствованного коммерческого реактора БН-1200 мощностью 1220 МВт.

Реактор БН-1200 (вертикальный разрез)

Планируется следующая программа реализации этого проекта:

  • 2010…2016 гг. – разработка техпроекта реакторной установки и выполнение программы НИОКР.
  • 2020 г. – ввод в действие головного энергоблока на МОХ- топливе и организация его централизованного производства.
  • 2023…2030 гг. – ввод в эксплуатацию серии энергоблоков суммарной мощностью около 11 ГВт.

Атомной энергетике всегда уделялось повышенное внимание из-за ее перспективности. В мире около двадцати процентов электроэнергии получают при помощи атомных реакторов, а в развитых странах этот показатель продукта атомной энергетики еще выше – больше трети от всего электричества. Однако, основным видом реакторов остаются тепловые, типа LWR и ВВЭР. Ученые считают, что одной из основных проблем этих реакторов в ближайшее время будет нехватка природного топлива, урана, его изотопа 238, необходимого для проведения цепной реакции деления. Исходя из возможного истощения ресурсов этого естественного материала топлива для тепловых реакторов, на развитие атомной энергетики накладываются ограничения. Более перспективным считается применение ядерных реакторов с использованием быстрых нейтронов, при котором возможно воспроизводство топлива.

История разработки

Исходя из программы Министерства атомной промышленности РФ в начале века были поставлены задачи по созданию и обеспечению безопасной работы ядерных комплексов энергетики, модернизированных АЭС нового типа. Одним из таких объектов стала Белоярская атомная электростанция, расположенная в 50-и километрах под Свердловском (Екатеринбург) Решение о ее создании принято в 1957 году, а в 1964 – запущен в работу первый блок.

В двух ее блоках работали тепловые ядерные реакторы, которые к 80-90 годам прошлого века исчерпали свой ресурс. На третьем блоке впервые в мире был апробирован реактор на быстрых нейтронах БН-600. За время его работы были получены планируемые разработчиками результаты. На высоте оказалась и безопасность процесса. В течение проектного срока, а он закончился в 2010 году, не произошло никаких серьезных нарушений и отклонений. Окончательный срок его работы истекает к 2025 году. Уже сейчас можно сказать, что ядерные реакторы на быстрых нейтронах, к которым относятся БН-600 и его преемник, БН-800, имеют большое будущее.

Запуск нового БН-800

Ученые ОКБМ им. Африкантова из Горького (нынешний Нижний Новгород) подготовили проект четвертого энергоблока Белоярской АЭС еще в 1983 году. В связи с аварией, произошедшей в Чернобыле в 1987 и введения новых нормативов безопасности в 1993 работы были прекращены и запуск отложен на неопределенное время. Только в 1997 году после получения лицензии на возведение блока №4 с реактором БН-800 мощностью 880 МВт от Госатомнадзора процесс возобновился.

25-го декабря 2013 началось разогревание реактора для дальнейшего вхождения теплоносителя. В июне четырнадцатого, как и намечалось по плану, произошел выход на массу, достаточную для проведения минимальной цепной реакции. Дальше дело застопорилось. МОКС-топливо, состоящее из делящихся оксидов урана и плутония, аналогичное тому, что применялось в энергоблоке №3, и не было готово. Именно его хотели использовать разработчики в новом реакторе. Пришлось комбинировать, искать новые варианты. В результате, чтобы не переносить запуск энергоблока, решили применять в части сборки урановое топливо. Запуск ядерного реактора БН-800 и блока №4 состоялся 10 декабря 2015.

Описание процесса

Во время работы в реакторе с быстрыми нейтронами происходит образование, вследствие реакции деления, вторичных элементов, которые при процессе поглощения урановой массой образуют вновь созданный ядерный материал плутоний-239, способный продолжать процесс дальнейшего деления. Главным достоинством этой реакции является получение нейтронов плутония, который применяется в качестве топлива для ядерных реакторов АЭС. Его наличие позволяет сократить добычу урана, запасы которого ограничены. Из килограмма урана-235 можно получить чуть более килограмма плутония-239, обеспечивая тем самым воспроизводство топлива.

В результате производство энергии в атомных энергоблоках при наименьших расходах дефицитного урана и отсутствия ограничений на производство возрастет в сотни раз. Подсчитано, что в этом случае урановых запасов хватит человечеству на несколько десятков веков. Оптимальным вариантом в атомной энергетике для сохранения баланса по минимальному расходу урана будет соотношение 4 к 1, где на четыре тепловых реактора будет использоваться один, работающий на быстрых нейтронах.

Цели БН-800

Во время срока эксплуатации в энергоблоке №4 Белоярской АЭС перед ядерным реактором были поставлены определенные задачи. Реактор БН-800 должен работать на MOX топливе. Небольшая заминка, произошедшая в начале работы, планы создателей не поменяла. По словам директора Белоярской АЭС г-н Сидорова переход в полном объеме на MOX топливо будет осуществлен в 2019 году. Если это осуществится, то местный ядерный реактор на быстрых нейтронах станет первым мире, полностью работающим с таким топливом. Он должен стать прототипом будущих подобных быстрых реакторов с жидкометаллическим теплоносителем, более производительных и безопасных. Исходя из этого на БН-800 проходит апробирование инновационного оборудования в рабочих условиях, проверка правильности применения новых технологий, влияющих на надежность, экономичность работы энергоблока.

class="eliadunit">

Проверка работы новой системы топливного цикла.

Испытания по выжиганию радиоактивных отходов с длительным сроком жизни.

Утилизация, накопленного в больших количествах, оружейного плутония.

БН-800, так же, как и его предшественник, БН-600, должны стать отправной точкой для накопления бесценного опыта создания и эксплуатации быстрых реакторов российским разработчикам.

Преимущества реактора на быстрых нейтронах

Применение в атомной энергетике БН-800 и ему подобных ядерных реакторов позволяет

Существенно увеличить срок по запасам урановых ресурсов, что значительно увеличивает полученный объем энергии.

Возможность сокращать срок жизни радиоактивных продуктов деления до минимального (от несколько тысяч лет до трехсот).

Повысить безопасность АЭС. Применение реактора на быстрых нейтронах позволяет нивелировать до минимального уровня возможность расплавления активной зоны, позволяет существенно повысить уровень самозащиты объекта, исключить выделения плутония при переработке. Реакторы такого типа с натриевым теплоносителем обладают повышенным уровнем безопасности.

17 августа 2016 года энергоблок №4 Белоярской АЭС вышел на режим работы мощности 100%. В объединенную систему «Урал» с декабря прошлого года поступает энергия, выработанная на быстром реакторе.

class="eliadunit">

В 40 км от Екатеринбурга, посреди красивейших уральских лесов расположен городок Заречный. В 1964 году здесь была запущена первая советская промышленная АЭС — Белоярская(с реактором АМБ-100 мощностью 100 МВт). Сейчас Белоярская АЭС осталась единственной в мире, где работает промышленный энергетический реактор на быстрых нейтронах — БН-600.

Представьте себе кипятильник, который испаряет воду, а образовавшийся пар крутит турбогенератор, вырабатывающий электроэнергию. Примерно так в общих чертах и устроена атомная электростанция. Только «кипятильник» — это энергия атомного распада. Конструкции энергетических реакторов могут быть различными, но по принципу работы их можно разделить на две группы — реакторы на тепловых нейтронах и реакторы на быстрых нейтронах.

В основе любого реактора лежит деление тяжелых ядер под действием нейтронов. Правда, есть и существенные отличия. В тепловых реакторах уран-235 делится под действием низкоэнергетических тепловых нейтронов, при этом образуются осколки деления и новые нейтроны, имеющие высокую энергию (так называемые быстрые нейтроны). Вероятность поглощения ядром урана-235 (с последующим делением) теплового нейтрона гораздо выше, чем быстрого, поэтому нейтроны нужно замедлить. Это делается с помощью замедлителей- веществ, при столкновениях с ядрами которых нейтроны теряют энергию. Топливом для тепловых реакторов обычно служит уран невысокого обогащения, в качестве замедлителя используются графит, легкая или тяжелая вода, а теплоносителем является обычная вода. По одной из таких схем устроены большинство функционирующих АЭС.


Быстрые нейтроны, образующиеся в результате вынужденного деления ядер, можно использовать и без какого-либо замедления. Схема такова: быстрые нейтроны, образовавшиеся при делении ядер урана-235 или плутония-239, поглощаются ураном-238 с образованием (после двух бета-распадов) плутония-239. Причем на 100 разделившихся ядер урана-235 или плутония-239 образуется 120−140 ядер плутония-239. Правда, поскольку вероятность деления ядер быстрыми нейтронами меньше, чем тепловыми, топливо должно быть обогащенным в большей степени, чем для тепловых реакторов. Кроме того, отводить тепло с помощью воды здесь нельзя (вода- замедлитель), так что приходится использовать другие теплоносители: обычно это жидкие металлы и сплавы, от весьма экзотических вариантов типа ртути (такой теплоноситель был использован в первом американском экспериментальном реакторе Clementine) или свинцово-висмутовых сплавов (использовались в некоторых реакторах для подводных лодок- в частности, советских лодок проекта 705) до жидкого натрия (самый распространенный в промышленных энергетических реакторах вариант). Реакторы, работающие по такой схеме, называются реакторами на быстрых нейтронах. Идея такого реактора была предложена в 1942 году Энрико Ферми. Разумеется, самый горячий интерес проявили к этой схеме военные: быстрые реакторы в процессе работы вырабатывают не только энергию, но и плутоний для ядерного оружия. По этой причине реакторы на быстрых нейтронах называют также бридерами (от английского breeder- производитель).

Что у него внутри

Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями. 370 топливных сборок образуют три зоны с различным обогащением по урану-235 — 17, 21 и 26% (изначально зон было только две, но чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства). Реактор БН-600 относится к размножителям (бридерам), то есть на 100 разделившихся в активной зоне ядер урана-235 в боковых и торцевых экранах нарабатывается 120−140 ядер плутония, что дает возможность расширенного воспроизводства ядерного топлива. Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) — трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части. В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней — головная часть, за которую сборку захватывают при перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно. Для управления реактором используются 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» — фотонейтронный источник (гамма-излучатель плюс бериллий).

Зигзаги истории

Интересно, что история мировой атомной энергетики началась именно с реактора на быстрых нейтронах. 20 декабря 1951 года в Айдахо заработал первый в мире энергетический реактор на быстрых нейтронах EBR-I (Experimental Breeder Reactor) электрической мощностью всего 0,2 МВт. Позднее, в 1963 году, недалеко от Детройта была запущена АЭС с реактором на быстрых нейтронах Fermi — уже мощностью около 100 МВт (в 1966 году там произошла серьезная авария с расплавлением части активной зоны, но без каких-либо последствий для окружающей среды или людей).

В СССР этой темой с конца 1940-х годов занимался Александр Лейпунский, под руководством которого в Обнинском физико-энергетическом институте (ФЭИ) были разработаны основы теории быстрых реакторов и построены несколько экспериментальных стендов, что позволило изучить физику процесса. В результате проведенных исследований в 1972 году вступила в строй первая советская АЭС на быстрых нейтронах в городе Шевченко (ныне Актау, Казахстан) с реактором БН-350 (изначально обозначался БН-250). Она не только вырабатывала электроэнергию, но и использовала тепло для опреснения воды. Вскоре были запущены французская АЭС с быстрым реактором Phenix (1973) и британская с PFR (1974), обе мощностью 250 МВт.


Однако в 1970-х в атомной энергетике стали доминировать реакторы на тепловых нейтронах. Обусловлено это было различными причинами. Например, тем, что быстрые реакторы могут вырабатывать плутоний, а значит, это может привести к нарушению закона о нераспространении ядерного оружия. Однако скорее всего основным фактором было то, что тепловые реакторы были более простыми и дешевыми, их конструкция отрабатывалась на военных реакторах для подводных лодок, да и сам уран был очень дешев. Вступившие в строй после 1980 года промышленные энергетические реакторы на быстрых нейтронах во всем мире можно пересчитать по пальцам одной руки: это Superphenix (Франция, 1985−1997), Monju (Япония, 1994−1995) и БН-600 (Белоярская АЭС, 1980), который в настоящий момент является единственным в мире действующим промышленным энергетическим реактором.

Они возвращаются

Однако в настоящее время к АЭС с реакторами на быстрых нейтронах вновь приковано внимание специалистов и общественности. Согласно оценкам, сделанным Международным агентством по атомной энергии (МАГАТЭ) в 2005 году, общий объем разведанных запасов урана, расходы на добычу которого не превышают $130 за килограмм, составляет примерно 4,7 млн тонн. Согласно оценкам МАГАТЭ, этих запасов хватит на 85 лет (если взять за основу потребность в уране для производства электроэнергии по уровню 2004 года). Содержание изотопа 235, который «сжигают» в тепловых реакторах, в природном уране — всего 0,72%, остальное составляет «бесполезный» для тепловых реакторов уран-238. Однако, если перейти к использованию реакторов на быстрых нейтронах, способных «сжигать» уран-238, этих же запасов хватит более чем на 2500 лет!


Цех сборки реактора, где из отдельных деталей методом крупноузловой сборки собирают отдельные части реактора

Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.

Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.

Перезагрузка вслепую

В отличие от тепловых реакторов, в реакторе БН-600 сборки находятся под слоем жидкого натрия, поэтому извлечение отработавших сборок и установка на их место свежих (этот процесс называют перегрузкой) происходит в полностью закрытом режиме. В верхней части реактора расположены большая и малая поворотная пробки (эксцентричные относительно друг друга, то есть их оси вращения не совпадают). На малой поворотной пробке смонтирована колонна с системами управления и защиты, а также механизмом перегрузки с захватом типа цангового. Поворотный механизм снабжен «гидрозатвором» из специального легкоплавкого сплава. В нормальном состоянии он твердый, а для перезагрузки его разогревают до температуры плавления, при этом реактор остается полностью герметичным, так что выбросы радиоактивных газов практически исключены. Процесс перегрузки выключает множество этапов. Сначала захват подводится к одной из сборок, находящихся во внутриреакторном хранилище отработанных сборок, извлекает ее и переносит в элеватор выгрузки. Затем ее поднимают в передаточный бокс и помещают в барабан отработавших сборок, откуда она после очистки паром (от натрия) попадет в бассейн выдержки. На следующем этапе механизм извлекает одну из сборок активной зоны и переставляет ее во внутриреакторное хранилище. После этого из барабана свежих сборок (в который заранее устанавливают ТВСы, пришедшие с завода) извлекают нужную, устанавливают ее в элеватор свежих сборок, который подает ее к механизму перегрузки. Последний этап — установка ТВС в освободившуюся ячейку. При этом на работу механизма в целях безопасности накладываются определенные ограничения: например, нельзя одновременно освобождать две соседние ячейки, кроме того, при перегрузке все стержни управления и защиты должны находиться в активной зоне. Процесс перегрузки одной сборки занимает до часа, перегрузка трети активной зоны (около 120 ТВС) занимает около недели (в три смены), такая процедура выполняется каждую микрокампанию (160 эффективных суток, в пересчете на полную мощность). Правда, сейчас выгорание топлива увеличили, и перегружается только четверть активной зоны (примерно 90 ТВС). При этом оператор не имеет непосредственной визуальной обратной связи, и ориентируется только по показателям датчиков углов поворота колонны и захватов (точность позиционирования — менее 0,01 градуса), усилий извлечения и постановки.


Процесс перезагрузки включает множество этапов, производится с помощью специального механизма и напоминает игру в «15». Конечная цель — попадание свежих сборок из соответствующего барабана в нужное гнездо, а отработавших — в свой барабан, откуда они после очистки паром (от натрия) попадут в бассейн выдержки.

Гладко только на бумаге

Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии — от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).

«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, — объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. — Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию". С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, — оно лишь чуть выше атмосферного».


По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы — как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».


«Проблемы действительно были одни и те же, — добавляет директор Белоярской АЭС Николай Ошканов, — но вот решали их у нас и во Франции различными способами. Например, когда на Phenix погнулась головная часть одной из сборок, чтобы захватить и выгрузить ее, французские специалисты разработали сложную и довольно дорогую систему ‘видения" сквозь слой натрия. А когда такая же проблема возникла у нас, один из наших инженеров предложил использовать видеокамеру, помещенную в простейшую конструкцию типа водолазного колокола, — открытую снизу трубу с поддувом аргона сверху. Когда расплав натрия был вытеснен, операторы с помощью видеосвязи смогли навести захват механизма, и гнутая сборка была успешно извлечена».

Быстрое будущее

«В мире не было бы такого интереса к технологии быстрых реакторов, если бы не успешная многолетняя эксплуатация нашего БН-600, — говорит Николай Ошканов.- Развитие атомной энергетики, на мой взгляд, в первую очередь связано с серийным производством и эксплуатацией именно быстрых реакторов. Только они позволяют вовлечь в топливный цикл весь природный уран и таким образом увеличить эффективность, а также в десятки раз уменьшить количество радиоактивных отходов. В этом случае будущее атомной энергетики будет действительно светлым».

И тех перспектив, которые несет лидерство в этой области.

Ядерные технологии в России всегда занимали особое место: они обеспечивали стратегическую защищённость, поддерживали глобальный паритет на этапах превосходства противников на мировой арене в сфере военных технологий, обеспечивали энергетическую безопасность. В современном мире развитие ядерных и радиационных технологий является одним из двигателей индустриального и общественного развития (крупный технологический проект неизбежно оказывается полюсом влияния на образование, экологию, экономику и культуру).

В настоящее время ядерным технологиям мир обязан порядка 13% всей производимой электроэнергии, с минимальной стоимостью киловатт-часа и самыми низкими показателями экологического загрязнения

При строительстве АЭС, чтобы добиться хоть каких-то цифр относительно воздействия на окружающую среду и выброса CO2, учитываются даже выхлопы дизельных генераторов строителей.

С чисто технологической точки зрения стоит отметить, что завидные показатели ядерной энергетики достигнуты с использованием реакторов, которые работают на «тепловых» или «медленных» нейтронах – нейтронах, прошедших через специальный замедлитель (вода, тяжёлая вода или графит), скинувших избыток энергии и запустивших самоподдерживающуюся цепную ядерную реакцию. Соответственно, от количества доступных для ядерной реакции свободных нейтронов и способности топлива их захватывать зависит скорость протекания реакции и многие инженерно-конструкторские задачи, которые необходимо решить для успешной работы ядерного реактора. По наблюдениям учёных, в технологии так называемых быстрых реакторов (а.к.а. «бридеры» или «реакторы-размножители») – есть избыток нейтронов, формируется нейтронный поток в 2,3 свободных нейтрона против 1 для тепловых реакторов. Этот колоссальный потенциал, помимо непосредственного энергогенерирующего применения, можно использовать для воспроизводства ядерного топлива и для решения других задач: когенерации электричества и тепла, опреснения воды, производства водорода и прочих.

Работающая сегодня ядерная энергетика в качестве топлива использует почти исключительно уран-235, содержание которого – всего 0,7% в ископаемом уране. До операбельного количества процент урана-235 в топливных элементах доводится за счёт специальных обогатительных процедур. Быстрые реакторы могут нарабатывать плутоний, чем вовлекают в генерацию и идущий сегодня на склады/свалки уран-238, содержание которого в добытой руде составляет оставшиеся 99,3%; а плутоний, в свою очередь, отлично подходит в качестве топлива для оперируемых сегодня тепловых реакторов, то есть в быстрых реакторах образуется больше топлива, чем потребляется!

Согласно оценкам МАГАТЭ, разведанных запасов урана-235 хватит приблизительно на 85 лет – это на порядок меньше, чем нефти или газа. У такой ядерной энергетики долговременного будущего, по всей очевидности, нет. Но картина решительно меняется при рассмотрении широкомасштабного внедрения ядерных реакторов на быстрых нейтронах и замыкании топливного цикла.

Эта версия развития открывает к использованию все природные ресурсы урана (235 и 238), а также тория и наработанного оружейного плутония, и тогда разведанных запасов хватит на (по разным оценкам) приблизительно 2500 лет, с учётом неукоснительного роста энергопотребления и дефицита ресурсов по Мальтусу. Неудивительно, что бридеры с самого начала развития ядерной энергетики полагались будущей основой мировой ядерно-генерирующей индустрии. В роли «ограничителя» выступает уровень развития технологий: работа с быстрыми реакторами, подразумевающая замыкание топливного цикла, ещё требует дорогого и сложного комплекса по переработке и рециклу облучённого ядерного топлива. Но, несмотря на более высокие удельные затраты на переработку ОЯТ быстрых реакторов, меньшие требуемые объемы перерабатываемых материалов для получения единицы плутония делают этот процесс экономически чертовски выгодным – по сравнению с сегодняшней переработкой отходов тепловых реакторов.

К слову о накопленных радиоактивных отходах: быстрые реакторы позволяют перерабатывать оружейный плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). Отработанное топливо медленных реакторов – это новое топливо для будущей ядерной энергетики, и такое будущее уже наступает. И целых два предприятия, способных перерабатывать облучённое ядерное топливо, находятся в России. В мире таких заводов не многим больше, чем два российских.

Мировая гонка за быстрыми реакторами

Первый в мире ядерный реактор был «медленным»: он был построен Энрико Ферми под западными трибунами футбольного поля Чикагского университета из графитовых и урановых блоков, на 28 минут с помощью такой-то матери запущен в 1942-ом году и не имел решительно никакой защиты от радиации и системы охлаждения. По довольно точному описанию самого г-на Ферми, эта разработка выглядела как «сырая куча черных кирпичей и деревянных брёвен», чем фактически и являлась. Но уже тогда он мечтал построить быстрый реактор.

Первые быстрые реакторы, соответственно, и появились в Америке: в Лос-Аламос в 1946-ом заработал стенд «Клементина», в котором в качестве довольно экзотичного теплоносителя выступала ртуть; а в 1951-м в Айдахо был запущен первый энергетический реактор EBR-1 (Experimental Breeder Reactor) мощностью всего 0,2 МВт, который продемонстрировал возможность одновременного производства электроэнергии и ядерного топлива в одном устройстве и дал старт истории атомной энергетики. Позднее, в 1963 году, в Детройте был запущен опытно-промышленный реактор на быстрых нейтронах «Энрико Ферми» мощностью около 100 МВт, но спустя всего три года там произошла серьезная авария с расплавлением части активной зоны – правда, без последствий для окружающей среды или людей.

Необходимая для советского атомного проекта возможность расширенного производства плутония была доказана на первом исследовательском советском реакторе с номенклатурно-незатейливым названием БР-1, запущенном в Обнинске в 1956-ом году. Получить же необходимые для разработки энергетического быстрого реактора данные удалось только на более старшей версии БР-5, созданной в 1959 году. Позднее, в 1970-ом, был пущен экспериментальный реактор БОР-60 в НИИАР (Димитровград), который до сих обеспечивает город теплом и электричеством. Далее технология была также отработана на первом в мире энергетическом реакторе на быстрых нейтронах БН-350, стартовавшем в 1973-м и занимавшимся энергогенерацией и опреснением воды в степях вплоть до его остановки в 1990-х годах. Впрочем, БН-350 был остановлен не по исчерпанию технического ресурса, а из-за опасений касательно качества обеспечения его эксплуатации после распада СССР.

В 1980-м , по состоянию на сегодня – единственный в мире действующий промышленный реактор на быстрых нейтронах. Сегодня на стадии технического проектирования уже находится реактор нового поколения БН-1200, предназначенный для серийного сооружения, – его ввод в эксплуатацию намечен на 2025. Также к 2020 на территории Сибирского химического комбината в Северске планируется запуск быстрого реактора на 300 МВт со свинцово-висмутовым теплоносителем – эта технология десятилетиями отрабатывалась в реакторах подводных лодок и ледоколов.

В конце 1950-х годов к лидерам ядерной гонки присоединились Англия и Франция со своими проектами. В 1986-м консорциум европейских стран подключил к сети реактор «Суперфеникс», при создании которого заимствовались некоторые решения, воплощенные ранее в советском БН-600, но в 1996 году проект был закрыт без права воскрешения. Дело в том, что стараниями масс-медиа вокруг «Суперфеникса» была раздута массовая истерия: строящийся реактор ассоциировался в первую очередь с наработкой плутония.

Раздутая в медийном поле катавасия вылилась в шестидесятитысячные акции протеста, перерастающие в уличные беспорядки, а через год после физического пуска, здание АЭС было в пять залпов обстреляно через Рону из советского противотанкового гранатомёта РПГ-7.

Существенного урона станции авторы этого праздника жизни, к счастью, нанести не смогли. Но проект вскоре был свернут. Впрочем, в 2010-ом французы вновь возвращаются к строительству реактора на быстрых нейтронах с натриевым теплоносителем – проект зовётся «Astrid», планируемая мощность – 600 МВт. И хотя Франция в своей программе быстрых реакторов опирается на собственные разработки, она по-прежнему в основном использует русские обогатительные производства.

Догнать и перегнать всех на свете стремятся китайцы, в том числе потому, что их здесь обошла Индия, которая после многочисленных переносов собирается в этом году провести физический пуск демонстрационного быстрого реактора собственной разработки PFBR-500. После его ввода Индия хочет приступить к строительству серии из шести коммерческих энергоблоков по 500 МВт каждый и на той же территории построить завод по переработке ядерного топлива, вовлекая свой ядерно-топливный торий, которого у них очень много.

Японцы, в свою очередь, вопреки ожидаемой реакции после фукусимской аварии, продолжают возрождение быстрого реактора «Мондзу», работавшего с 1994 по 1995 гг. К слову отметить, не стоит обманываться в отношении фукусимской трагедии: для ядерной энергетики вообще характерна цикличность развития. После каждой аварии (Трёхмильный остров, Чернобыль, Фукусима) интерес к АЭС слегка ослабевает, но потом потребности в электроэнергии снова диктуют свой категорический императив – и вот в эксплуатацию вводятся следующие поколения реакторов, с новыми типами защитных механизмов.

Всего в мире было разработано порядка 30 концепций быстрых реакторов, часть из которых была экспериментально отработана «в железе». Но похвастаться отработанными технологиями и безаварийной эксплуатацией промышленных быстрых реакторов в своём национальном портфолио на сегодня может только одна страна – и это Россия.

Сложная инженерия

Достоинства быстрых реакторов очевидны, равно как очевидна и инженерная сложность их создания. Отсутствие необходимых технологий – вот одна из ключевых причин, почему быстрые реакторы на текущий момент не получили более широкого распространения. Как отмечалось ранее, воду – замедлитель нейтронов – в быстрых реакторах использовать нельзя, поэтому используются металлы в жидком состоянии: от самого распространённого натрия до свинцово-висмутовых сплавов. Использование жидкометаллического теплоносителя в условиях многократно более интенсивного энерговыделения, чем в традиционных реакторах, ставит ещё одну серьёзную задачу – материаловедческую. Все компоненты корпуса реактора и внутриреакторных систем необходимо изготавливать из коррозиестойких спецматериалов, способных выдержать характерные для жидкого натрия в быстром реакторе 550°C.

Проблема подбора правильных материалов создала немало задач для неиссякаемой находчивости отечественных инженеров. Когда в активной зоне работающего реактора искривилась одна топливная сборка, чтобы её достать, французские атомщики изобрели сложный и дорогой способ «видения» сквозь слой жидкого натрия. Когда та же проблема возникла у русских, наши инженеры решили элегантно использовать простую видеокамеру, помещенную в своеобразный водолазный колокол – трубу с поддувом аргона сверху, что позволило операторам быстро и эффективно достать испорченные топливные элементы.

Разумеется, инженерная сложность быстрого реактора сказывается на его стоимости, которая в настоящее время – когда быстрые реакторы находятся скорее в концептуальном поле, – существенно выше, чем у тепловых реакторов. Все процессы по замыканию ядерно-топливного цикла также достаточно дорогие: технологии имеются, они отработаны, отрабатываются и развиваются, но их ещё предстоит вывести на потоковый коммерческий уровень. К счастью, для России это – вопрос ближайших двух-трёх десятилетий.

Мягкая сила быстрых нейтронов

Бесспорное технологическое превосходство России в области замыкания ядерно-топливного цикла, очевидно, должно получить стратегическую реализацию на мировой арене. Россия может принять на себя бремя лидерства по созданию такой мировой инфраструктуры, которая позволила бы обеспечить равный доступ всех заинтересованных государств к атомной энергии, но при этом надежно гарантировала бы соблюдение требований режима нераспространения. В плане реализации этой инициативы предусмотрены следующие направления:

Создание международных центров по обогащению урана (МЦОУ), первый из которых располагается в Ангарске;

Формирование международных центров по переработке и хранению ОЯТ (не всё же облизываться на наши просторы);

Создание международных центров по подготовке квалифицированного персонала для АЭС и проведение совместных научно-исследовательских работ в области защищенных от несанкционированного распространения ядерных технологий.

По состоянию на сегодня наиболее разработанной частью выдвинутой программы стал пункт о создании МЦОУ: подобные центры функционируют как совместные коммерческие предприятия, не пользующиеся государственной поддержкой. В совет директоров подобных предприятий должны входить представители власти, сотрудники компаний ядерно-топливного цикла и эксперты МАГАТЭ, притом последние окажутся консультантами без права голоса, чьей целью будет верификация работы центра и сертификация отдельных его действий. Соответственно, к технологиям обогащения неядерные страны допускаться не будут, а это вопрос довольно серьёзный.

К сожалению, остальные положения инициативы по созданию глобальной инфраструктуры ядерной энергетики не получили содержательного наполнения. В связи с чем возникает естественный вопрос: есть ли гарантии того, что эти версии политической эксплуатации технического потенциала не окажутся забытыми фантазиями на бумаге?

Для выхода из создавшейся ситуации, для привлечения широкого круга развивающихся стран, заинтересованных в мирном использовании ядерной энергетики, для старта программы международных центров ядерно-топливного цикла необходимо наполнить эти предложения прогностико-исследовательским и научно-техническим содержаниями.

Привлечённые к крупным исследовательским проектам в сфере экономики ядерной энергетики небольшие и развивающиеся государства способны увидеть свою конкретную выгоду от участия в реализации упомянутых инициатив и понять, какие изменения необходимы в их национальных программах.

Признанный передовой уровень технологии быстрых реакторов в России - единственной стране, эксплуатирующей промышленный реактор этого типа в сочетании с опытом переработки ядерного топлива, позволит России в долговременной перспективе претендовать на роль одного из лидеров мировой ядерной энергетики.

Успешная реализация российских предложений по созданию глобальной ядерной инфраструктуры является важным фактором для будущего развития мировой энергетики, не говоря уже о российском месте в этом развитии. Воплощение российских предложений может со временем не только обеспечить безопасность глобальной ядерной энергетики и её практически бесконечную топливную самообеспеченность, но и перекроить ландшафт рынка электроэнергетики в целом: угроза дефицита всех видов ископаемого топлива, включая уран, на определённом этапе станет гораздо ближе и реальнее, чем может показаться.

В ответ на растущие цены на углеводороды в мире последние лет этак двадцать наблюдается обострение интереса к альтернативной энергетике. Однако есть ряд оснований полагать, что единственной вменяемой альтернативой традиционной тепловой генерации может быть только ядерная энергетика. О сравнении перспектив ядерной энергетики и возобновляемой генерации написаны очень серьёзные и толстые книги, которые, вкратце, говорят, что в перспективе ближайших десятилетий нам светят быстрые реакторы – и технологическое лидерство России.

Наибольшее распространение сегодня получили водно-водяные и кипящие тепловые реакторы. Состав ОЯТ различных реакторов несколько различается. Он зависит, в частности от выгорания, но не только. В типичном реакторе типа ВВЭР электрической мощностью 1000 МВт при использовании уранового топлива ежегодно образуется 21 т отработавшего ядерного топлива (ОЯТ) объемом 11 м 3 (1/3 общей загрузки топлива). В 1 т ОЯТ, только что извлеченного из реактора типа ВВЭР, содержится 950- 980 кг урана-235 и 238, 5 - 10 кг плутония, продуктов деления (1.2 - 1.5 кг цезия-137, 770 г технеция-90, 500 г стронция-90, 200 г иода-129, 12 - 15 г самария-151), минорных актинидов (500 г нептуния-237, 120 - 350 г америция-241 и 243, 60 г кюрия-242 и 244), а также в меньшем количестве радиоизотопы селена, циркония, палладия, олова и других элементов. При использовании МОХ-топлива в ОЯТ будет больше америция и кюрия.

Продукты деления

В течении первых десяти лет тепловыделение ОЯТ после выгрузки падает приблизительно на два порядка и определяется в основном продуктами деления. Наибольший вклад в активность отработавшего топлива с трехлетним временем выдержки вносят: 137 Cs + 137m Ba (24%), 144 Ce + 144 Pr (21%), 90 Sr + 90 Y (18%), 106 Ru + 106 Rh (16%), 147 Pm (10%), 134 Cs (7%), относительный вклад 85 Kr, 154 Eu, 155 Eu равен приблизительно 1% от каждого изотопа.

Короткоживущие продукты деления

Нуклид Т 1/2 Нуклид Т 1/2
85 Kr 10.8года 137 Cs 26.6 года
90 Sr 29 лет 137m Ba 156 сут
90 Y 2.6 сут 144 Ce 284.91 сут
106 Ru 371.8 сут 144 Pr 17.28 м
106 Rh 30.07 с 147 Pm 2.6 года
134 Cs 2.3 года 154 Eu 8.8 года
155 Eu 4.753 года

В течение нескольких лет после выгрузки, в то время как отработавшее топливо хранится в водонаполненных бассейнах, основной риск состоит в том, что потеря охлаждающей воды может привести к нагреву топлива до температуры, достаточно высокой, чтобы воспламенить циркониевый сплав из которого изготавливаются ТВЭЛы, что приведет к выбросу летучих радиоактивных продуктов деления.

Долгоживущие продукты деления

В долгосрочном плане (10 4 -10 6 лет) эти продукты могут представлять опасность из-за своей большей, чем у актинидов мобильности.

Актиниды

К минорным актиноидам относятся долгоживущие и относительно долгоживущие изотопы нептуния (Np-237), америция (Am-241, Am-243) и кюрия (Cm-242, Cm-244, Cm-245).

Нептуний

Нептуний, который преимущественно представлен единственным изотопом Np-237 нарабатывается на изотопе урана U-235 по следующей цепочке:

Схема его распада до ближайшего долгоживущего дочернего ядра имеет вид

Np-237 (T 1/2 = 2.14·10 6 лет; α) → Pa-233 (T 1/2 = 27 суток; β) → U-233 (T 1/2 = 1.59·10 5 лет; α)

Анализируя динамику изменения активностей ядер в цепочке распадов, можно сказать, что Np-237 и Ра-233 будут находиться в вековом равновесии и их активности будут равны, а активность Ра-233 будет очень мала и ее можно не учитывать.

Радиационные характеристики Np-237 и Ра-233

C 0 – удельная активность материала в расчете на 1 кг Np-237 (Ки/кг); Q – энергия распада (МэВ);
E α – энергия α-частиц (МэВ); E β – средняя энергия β-частиц (МэВ);
E γ – общая энергия γ-квантов (кэВ); W – тепловыделение (Вт/кг).

Нептуний, который преимущественно представлен единственным изотопом Np-237, вносит значительным вклад в долгосрочную радиотоксичность из-за его большого периода полураспада. Однако Np-237 не вносят существенного вклада в тепловыделение. Np-237 может быть трансмутирован как в тепловых, так и в быстрых реакторах.

Америций

К долгоживущим изотопам америция, нарабатываемым в значимых количествах в реакторах на тепловых нейтронах, относятся изотопы Аm-241 и Am-243. Изотоп Аm-242m нарабатывается в существенно меньших количествах, однако его содержание в америции, выделяемом из ОЯТ, может оказывать значительное влияние на характеристики нейтронного излучения материала.
Изотопы америция Am-241, Am-243 и изотопы кюрия Cm-242, Cm-244 и Cm-245 нарабатываются на изотопе урана U-238 по следующим цепочкам:



Am-241
В ОЯТ Am-241 является доминирующим изотопов америция, хотя там есть также Am-242, Am-242m и Am-243.
Схема распада Am-241 до ближайшего долгоживущего дочернего ядра имеет вид

Am-241 (T 1/2 = 4.32·10 2 лет; α) → Np-237 (T 1/2 = 2.14·10 6 лет; α)

Так как T 1/2 (Am-241) << T 1/2 (Np-237), то радиационные характеристики процесса определяются исключительно параметрами распада собственно Аm-241

Am-243
Схема распада Am-243 до ближайшего долгоживущего дочернего ядра имеет вид

Am-243 (T 1/2 = 7.38·10 3 лет; α) → Np-239 (T 1/2 = 2.35 суток; β) →Pu-239 (T 1/2 = 2.42·10 4 лет; α)

Am-243 и Np-239 находятся в радиационном равновесии и их активности равны.

Am-242m
В реакторах на тепловых нейтронах нарабатывается также долгоживущий изомер Am-242m

Am-242m (T 1/2 = 1.52·10 2 лет; γ) → Am-242 (T 1/2 = 16 часов; 82% β ; 18% ЭЗ*) →
→ Pu-242 (T 1/2 = 3.76·10 5 лет; α) → Cm-242 (T 1/2 = 1.63·10 2 суток; α) → Pu-238 (T 1/2 = 88 лет; α)

В радиоактивность материала, содержащего Am-242m, дают вклад следующие радионуклиды:
Am-242m, Am-242, Cm-242

Радиационные характеристики Аm-241, Am-243, Np-239, Am-242m, Am-242 и Cm-242

Изотоп T 1/2 C 0 Тип
распада
Q E α E β E γ W
Am-241 4.32·10 2 лет 3.44·10 3 α 5.64 5.48 29 1.11·10 2
Am-243 7.38·10 3 лет 200 α 5.44 5.27 0 48 6.6
Np-239 2.35 суток β 0.72 0 0.118 175
Am-242m 1.52·10 2 лет 9.75·10 3 γ 0.072 0 0 49 310
Am-242 16 часов 1.75·10 3
8·10 3
ЭЗ
β
0.75, 17.3%
0.66, 82.7%
0
0
0
0.16
18
Cm-242 1.63·10 2 суток 8·10 3 α 6.2 6.1 0 1.8

Америций является основным вкладчиком гамма-активности и радиотоксичности ОЯТ прилизительно через 500 лет после выгрузки, когда вклад продуктов деления уменьшается на на несколько порядков. Весь америций поддается трансмутации в интенсивном потоке нейтронов помощью реакций захвата и деления.

Кюрий

Cm-242
Схема распада Cm-242 имеет вид:

Сm-242 (Т 1/2 = 163 суток; α) → Pu-238 (Т 1/2 = 87.7 лет; α) → U-234 (Т 1/2 = 2.46·10 5 лет; α)

Активность Сm-242 быстро спадает, при этом активность Pu-238 увеличивается и, довольно быстро, за ≈ 3.4 года, активности Pu-238 и Сm-242 сравниваются при этом активность Cm-242 уменьшается приблизительно в 200 раз по сравнению с первоначальным уровнем.

Радиационные характеристики Сm-242 и Pu-238

Сm-244
Схема распада Сm-244 имеет вид:

Сm-244 (Т 1/2 = 18.1 лет; α) → Pu-240 (Т 1/2 = 6.56·10 3 лет; α).

Радиационные характеристики Сm-244

Сm-245
Схема распада Сm-245 имеет вид:

Сm-245 (Т 1/2 = 8.5·10 3 лет; α) → Pu-241 (Т 1/2 = 14.4 лет; β) → Am-241 (Т 1/2 = 4.33·10 2 лет; α).

При t >> Т 1/2 (Pu-241) активность Pu-241 находится в равновесии с активностью Cm-245.

Радиационные характеристики Cm-245 и Pu-241

Кюрий вносит значительный вклад в гамма-активность, нейтронное излучение и радиотоксичность. Кюрий плохо подходит для трансмутации, поскольку сечения деления и захвата основных изотопов (Cm-242 и Cm-244) довольно малы. Хотя Cm-242 имеет очень короткий период полураспада (163 дней), он постоянно генерируется в облученном топливе в результате распада
Am-242m (период полураспада 141 год).

Тепловыделение и радиотоксичность ОЯТ


Рис. 3. Тепловыделение отработавшего топлива легководного реактора с выгоранием 50 ГВт·дн/ттм

На рис. 3 показана тепловыделение отработавшего топлива легководного реактора с выгоранием 50 ГВт·д/ттм. Выгорание определяется как отношение выработанной тепловой энергии за время кампании реактора к массе загруженного топлива. После хранения в течение примерно 40 лет в отработавшем топливе остается лишь несколько процентов от исходной радиоактивности. Тепловыделение быстро падает в течение первых 200 лет после выгрузки. Причем первые 60 лет основной вклад в тепловыделение вносит распад продуктов деления. Наибольший вклад вносят 137 Cs + 137 Ba и 90 Sr + 90 Y. Несмотря на то, что минорные актиниды в реакторах производятся в относительно небольших количествах, они вносят существенный вклад в тепловыделение, выход нейтронов и радиотоксичность ОЯТ. Через 60 лет в величине тепловыделения превалируют актиниды. После 200 лет тепловыделение почти полностью вызвано актинидами − плутонием и америцием. Медленное снижение тепловыделения обусловлена относительно большими периодами полураспадов 241 Am, 238 Pu, 239 Pu и 240 Pu.
На рис. 4 показано как изменяется со временем мощность дозы внешнего облучения от ОЯТ.


Рис. 4. Зависимость от времени мощности дозы излучения от одной тонны отработавшего ядерного топлива после выгрузки из реактора с выгоранием 38 Гвтּ дн/т на расстоянии 1 метра.

Примерно через год после загрузки топлива, когда ОЯТ выгружается из реактора, мощность дозы от 1 т составляет около 1000 Зв/ч. Это означает, что смертельная доза, около 5 Зв, принимается примерно за 20 секунд. Доза полностью полностью зависит от вклада гамма излучения. Излучение уменьшается со временем, но мощность дозы после 40 лет, когда отработавшее топливо должно быть размещено в глубоком хранилище, по-прежнему высока − 65 Зв/ч. Поэтому при обращении с отработавшим ядерным топливом требуются защитные меры против внешнего облучения, от выгрузки из реактора до окончательного захоронения. Из рис. 4 видно, что доза от нейтронного излучения всегда много меньше, чем от гамма-излучения, но нейтронное излучение снижается медленнее.
В течение первых нескольких десятилетий радиотоксичность в основном определяется такими продуктами деления как 90 Sn и 137 Cs и продуктами их распада. После промежуточного хранения в течение примерно 40 лет в отработавшем топливе остается только несколько процентов от первоначальной радиоактивности. В течение нескольких сотен лет большинство радионуклидов распадается и основной вклад в радиотоксичность вносят долгоживущие актиниды (плутоний и америций). Радиотоксичность ОЯТ снизится до уровня радиотоксичности урановой руды примерно через 100 000 лет.


Рис. 5. Зависимость от времени радиотоксичности ОЯТ при выгорании 60 Гвтּ дн/т.

Просмотров