How to reduce a quadratic equation to standard form. Solving Quadratic Equations

I hope that after studying this article you will learn how to find the roots of a complete quadratic equation.

Using the discriminant, only complete quadratic equations are solved; for solving incomplete ones quadratic equations use other methods that you will find in the article "Solving incomplete quadratic equations".

What quadratic equations are called complete? This equations of the form ax 2 + b x + c = 0, where coefficients a, b and c are not equal to zero. So, to solve a complete quadratic equation, we need to calculate the discriminant D.

D = b 2 – 4ac.

Depending on the value of the discriminant, we will write down the answer.

If the discriminant is a negative number (D< 0),то корней нет.

If the discriminant is zero, then x = (-b)/2a. When the discriminant positive number(D > 0),

then x 1 = (-b - √D)/2a, and x 2 = (-b + √D)/2a.

For example. Solve the equation x 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Answer: 2.

Solve Equation 2 x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Answer: no roots.

Solve Equation 2 x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3.5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Answer: – 3.5; 1.

So let’s imagine the solution of complete quadratic equations using the diagram in Figure 1.

Using these formulas you can solve any complete quadratic equation. You just need to be careful to the equation was written as a polynomial of the standard form

A x 2 + bx + c, otherwise you may make a mistake. For example, in writing the equation x + 3 + 2x 2 = 0, you can mistakenly decide that

a = 1, b = 3 and c = 2. Then

D = 3 2 – 4 1 2 = 1 and then the equation has two roots. And this is not true. (See solution to example 2 above).

Therefore, if the equation is not written as a polynomial of the standard form, first the complete quadratic equation must be written as a polynomial of the standard form (the monomial with the largest exponent should come first, that is A x 2 , then with less bx and then a free member With.

When solving the reduced quadratic equation and a quadratic equation with an even coefficient in the second term, you can use other formulas. Let's get acquainted with these formulas. If in a complete quadratic equation the second term has an even coefficient (b = 2k), then you can solve the equation using the formulas shown in the diagram in Figure 2.

A complete quadratic equation is called reduced if the coefficient at x 2 is equal to one and the equation takes the form x 2 + px + q = 0. Such an equation can be given for solution, or it can be obtained by dividing all coefficients of the equation by the coefficient A, standing at x 2 .

Figure 3 shows a diagram for solving the reduced square
equations. Let's look at an example of the application of the formulas discussed in this article.

Example. Solve the equation

3x 2 + 6x – 6 = 0.

Let's solve this equation using the formulas shown in the diagram in Figure 1.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3)))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3)))/6 = –1 + √3

Answer: –1 – √3; –1 + √3

You can notice that the coefficient of x in this equation is an even number, that is, b = 6 or b = 2k, whence k = 3. Then let’s try to solve the equation using the formulas shown in the diagram of the figure D 1 = 3 2 – 3 · (– 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Answer: –1 – √3; –1 + √3. Noticing that all the coefficients in this quadratic equation are divisible by 3 and performing the division, we get the reduced quadratic equation x 2 + 2x – 2 = 0 Solve this equation using the formulas for the reduced quadratic
equations figure 3.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Answer: –1 – √3; –1 + √3.

As you can see, when solving this equation using different formulas, we received the same answer. Therefore, having thoroughly mastered the formulas shown in the diagram in Figure 1, you will always be able to solve any complete quadratic equation.

website, when copying material in full or in part, a link to the source is required.

The use of equations is widespread in our lives. They are used in many calculations, construction of structures and even sports. Man used equations in ancient times, and since then their use has only increased. The discriminant allows you to solve any quadratic equation using a general formula, which has the following form:

The discriminant formula depends on the degree of the polynomial. The above formula is suitable for solving quadratic equations of the following form:

The discriminant has the following properties that you need to know:

* "D" is 0 when the polynomial has multiple roots (equal roots);

* "D" is a symmetric polynomial with respect to the roots of the polynomial and is therefore a polynomial in its coefficients; moreover, the coefficients of this polynomial are integers regardless of the extension in which the roots are taken.

Let's say we are given a quadratic equation of the following form:

1 equation

According to the formula we have:

Since \, the equation has 2 roots. Let's define them:

Where can I solve an equation using a discriminant online solver?

You can solve the equation on our website https://site. The free online solver will allow you to solve online equations of any complexity in a matter of seconds. All you need to do is simply enter your data into the solver. You can also watch the video instructions and find out how to solve the equation on our website. And if you have any questions, you can ask them in our VKontakte group http://vk.com/pocketteacher. Join our group, we are always happy to help you.

Kopyevskaya rural secondary school

10 Ways to Solve Quadratic Equations

Head: Patrikeeva Galina Anatolyevna,

mathematic teacher

village Kopevo, 2007

1. History of the development of quadratic equations

1.1 Quadratic equations in Ancient Babylon

1.2 How Diophantus composed and solved quadratic equations

1.3 Quadratic equations in India

1.4 Quadratic equations by al-Khorezmi

1.5 Quadratic equations in Europe XIII - XVII centuries

1.6 About Vieta's theorem

2. Methods for solving quadratic equations

Conclusion

Literature

1. History of the development of quadratic equations

1.1 Quadratic equations in Ancient Babylon

The need to solve equations not only of the first, but also of the second degree, even in ancient times, was caused by the need to solve problems related to finding the areas of land plots and with excavation work of a military nature, as well as with the development of astronomy and mathematics itself. Quadratic equations could be solved around 2000 BC. e. Babylonians.

Using modern algebraic notation, we can say that in their cuneiform texts there are, in addition to incomplete ones, such, for example, complete quadratic equations:

X 2 + X = ¾; X 2 - X = 14,5

The rule for solving these equations, set out in the Babylonian texts, essentially coincides with the modern one, but it is not known how the Babylonians arrived at this rule. Almost all cuneiform texts found so far provide only problems with solutions laid out in the form of recipes, with no indication as to how they were found.

Despite high level development of algebra in Babylon, the cuneiform texts lack the concept of a negative number and general methods for solving quadratic equations.

1.2 How Diophantus composed and solved quadratic equations.

Diophantus' Arithmetic does not contain a systematic presentation of algebra, but it contains a systematic series of problems, accompanied by explanations and solved by constructing equations of various degrees.

When composing equations, Diophantus skillfully selects unknowns to simplify the solution.

Here, for example, is one of his tasks.

Problem 11.“Find two numbers, knowing that their sum is 20 and their product is 96”

Diophantus reasons as follows: from the conditions of the problem it follows that the required numbers are not equal, since if they were equal, then their product would not be equal to 96, but to 100. Thus, one of them will be more than half of their sum, i.e. . 10 + x, the other is less, i.e. 10's. The difference between them 2x .

Hence the equation:

(10 + x)(10 - x) = 96

100 - x 2 = 96

x 2 - 4 = 0 (1)

From here x = 2. One of the required numbers is equal to 12 , other 8 . Solution x = -2 for Diophantus does not exist, since Greek mathematics knew only positive numbers.

If we solve this problem by choosing one of the required numbers as the unknown, then we will come to a solution to the equation

y(20 - y) = 96,

y 2 - 20y + 96 = 0. (2)


It is clear that by choosing the half-difference of the required numbers as the unknown, Diophantus simplifies the solution; he manages to reduce the problem to solving an incomplete quadratic equation (1).

1.3 Quadratic Equations in India

Problems on quadratic equations are found already in the astronomical treatise “Aryabhattiam”, compiled in 499 by the Indian mathematician and astronomer Aryabhatta. Another Indian scientist, Brahmagupta (7th century), outlined general rule solutions of quadratic equations reduced to a single canonical form:

ah 2 + b x = c, a > 0. (1)

In equation (1), the coefficients, except A, can also be negative. Brahmagupta's rule is essentially the same as ours.

IN Ancient India Public competitions in solving difficult problems were common. One of the old Indian books says the following about such competitions: “As the sun eclipses the stars with its brilliance, so learned man will eclipse the glory of another people's assemblies, proposing and solving algebraic problems.” Problems were often presented in poetic form.

This is one of the problems of the famous Indian mathematician of the 12th century. Bhaskars.

Problem 13.

“A flock of frisky monkeys, and twelve along the vines...

The authorities, having eaten, had fun. They started jumping, hanging...

There are them in the square, part eight. How many monkeys were there?

I was having fun in the clearing. Tell me, in this pack?

Bhaskara's solution indicates that he knew that the roots of quadratic equations are two-valued (Fig. 3).

The equation corresponding to problem 13 is:

( x /8) 2 + 12 = x

Bhaskara writes under the guise:

x 2 - 64x = -768

and, to complete the left side of this equation to square, adds to both sides 32 2 , then getting:

x 2 - 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 Quadratic equations in al - Khorezmi

In the algebraic treatise of al-Khorezmi, a classification of linear and quadratic equations is given. The author counts 6 types of equations, expressing them as follows:

1) “Squares are equal to roots,” i.e. ax 2 + c = b X.

2) “Squares are equal to numbers”, i.e. ax 2 = c.

3) “The roots are equal to the number,” i.e. ah = s.

4) “Squares and numbers are equal to roots,” i.e. ax 2 + c = b X.

5) “Squares and roots are equal to numbers”, i.e. ah 2 + bx = s.

6) “Roots and numbers are equal to squares,” i.e. bx + c = ax 2 .

For al-Khorezmi, who avoided consumption negative numbers, the terms of each of these equations are added, not subtracted. In this case, equations that do not have positive solutions are obviously not taken into account. The author sets out methods for solving these equations using the techniques of al-jabr and al-muqabala. His decisions, of course, do not completely coincide with ours. Not to mention that it is purely rhetorical, it should be noted, for example, that when solving an incomplete quadratic equation of the first type

al-Khorezmi, like all mathematicians before the 17th century, does not take into account the zero solution, probably because in specific practical problems it does not matter. When solving complete quadratic equations, al-Khorezmi sets out the rules for solving them using particular numerical examples, and then geometric proofs.

Problem 14.“The square and the number 21 are equal to 10 roots. Find the root" (implying the root of the equation x 2 + 21 = 10x).

The author's solution goes something like this: divide the number of roots in half, you get 5, multiply 5 by itself, subtract 21 from the product, what remains is 4. Take the root from 4, you get 2. Subtract 2 from 5, you get 3, this will be the desired root. Or add 2 to 5, which gives 7, this is also a root.

The treatise of al-Khorezmi is the first book that has come down to us, which systematically sets out the classification of quadratic equations and gives formulas for their solution.

1.5 Quadratic equations in Europe XIII - XVII bb

Formulas for solving quadratic equations along the lines of al-Khwarizmi in Europe were first set forth in the Book of Abacus, written in 1202 by the Italian mathematician Leonardo Fibonacci. This voluminous work, which reflects the influence of mathematics, both Islamic countries and Ancient Greece, is distinguished by both completeness and clarity of presentation. The author independently developed some new algebraic examples solving problems and was the first in Europe to introduce negative numbers. His book contributed to the spread of algebraic knowledge not only in Italy, but also in Germany, France and other European countries. Many problems from the Book of Abacus were used in almost all European textbooks of the 16th - 17th centuries. and partly XVIII.

The general rule for solving quadratic equations reduced to a single canonical form:

x 2 + bx = c,

for all possible combinations of coefficient signs b , With was formulated in Europe only in 1544 by M. Stiefel.

Derivation of the formula for solving a quadratic equation in general view Viet has it, but Viet recognized only positive roots. Italian mathematicians Tartaglia, Cardano, Bombelli were among the first in the 16th century. In addition to positive ones, negative roots are also taken into account. Only in the 17th century. Thanks to the work of Girard, Descartes, Newton and other scientists, the method of solving quadratic equations takes on a modern form.

1.6 About Vieta's theorem

The theorem expressing the relationship between the coefficients of a quadratic equation and its roots, named after Vieta, was formulated by him for the first time in 1591 as follows: “If B + D, multiplied by A - A 2 , equals BD, That A equals IN and equal D ».

To understand Vieta, we should remember that A, like any vowel letter, meant the unknown (our X), vowels IN, D- coefficients for the unknown. In the language of modern algebra, the above Vieta formulation means: if there is

(a + b )x - x 2 = ab ,

x 2 - (a + b )x + a b = 0,

x 1 = a, x 2 = b .

Expressing the relationship between the roots and coefficients of the equations general formulas written using symbols, Viet established uniformity in the methods of solving equations. However, the symbolism of Viet is still far from modern look. He did not recognize negative numbers and therefore, when solving equations, he considered only cases where all the roots were positive.

2. Methods for solving quadratic equations

Quadratic equations are the foundation on which the majestic edifice of algebra rests. Quadratic equations are found wide application when solving trigonometric, exponential, logarithmic, irrational and transcendental equations and inequalities. We all know how to solve quadratic equations from school (8th grade) until graduation.

Consider the quadratic equation:
(1) .
Roots of a quadratic equation(1) are determined by the formulas:
; .
These formulas can be combined like this:
.
When the roots of a quadratic equation are known, then a polynomial of the second degree can be represented as a product of factors (factored):
.

We further assume that - real numbers.
Let's consider discriminant of a quadratic equation:
.
If the discriminant is positive, then the quadratic equation (1) has two different real roots:
; .
Then the factorization of the quadratic trinomial has the form:
.
If the discriminant is equal to zero, then the quadratic equation (1) has two multiple (equal) real roots:
.
Factorization:
.
If the discriminant is negative, then the quadratic equation (1) has two complex conjugate roots:
;
.
Here is the imaginary unit, ;
and are the real and imaginary parts of the roots:
; .
Then

.

Graphic interpretation

If you build graph of a function
,
which is a parabola, then the points of intersection of the graph with the axis will be the roots of the equation
.
At , the graph intersects the x-axis (axis) at two points.
When , the graph touches the x-axis at one point.
When , the graph does not cross the x-axis.

Below are examples of such graphs.

Useful formulas related to quadratic equation

(f.1) ;
(f.2) ;
(f.3) .

Derivation of the formula for the roots of a quadratic equation

We carry out transformations and apply formulas (f.1) and (f.3):




,
Where
; .

So, we got the formula for a polynomial of the second degree in the form:
.
This shows that the equation

performed at
And .
That is, and are the roots of the quadratic equation
.

Examples of determining the roots of a quadratic equation

Example 1


(1.1) .

Solution


.
Comparing with our equation (1.1), we find the values ​​of the coefficients:
.
We find the discriminant:
.
Since the discriminant is positive, the equation has two real roots:
;
;
.

From here we obtain the factorization of the quadratic trinomial:

.

Graph of the function y = 2 x 2 + 7 x + 3 intersects the x-axis at two points.

Let's plot the function
.
The graph of this function is a parabola. It crosses the abscissa axis (axis) at two points:
And .
These points are the roots of the original equation (1.1).

Answer

;
;
.

Example 2

Find the roots of a quadratic equation:
(2.1) .

Solution

Let's write the quadratic equation in general form:
.
Comparing with the original equation (2.1), we find the values ​​of the coefficients:
.
We find the discriminant:
.
Since the discriminant is zero, the equation has two multiple (equal) roots:
;
.

Then the factorization of the trinomial has the form:
.

Graph of the function y = x 2 - 4 x + 4 touches the x-axis at one point.

Let's plot the function
.
The graph of this function is a parabola. It touches the x-axis (axis) at one point:
.
This point is the root of the original equation (2.1). Because this root is factored twice:
,
then such a root is usually called a multiple. That is, they believe that there are two equal roots:
.

Answer

;
.

Example 3

Find the roots of a quadratic equation:
(3.1) .

Solution

Let's write the quadratic equation in general form:
(1) .
Let's rewrite the original equation (3.1):
.
Comparing with (1), we find the values ​​of the coefficients:
.
We find the discriminant:
.
The discriminant is negative, . Therefore there are no real roots.

You can find complex roots:
;
;

Let's plot the function
.
The graph of this function is a parabola. It does not intersect the x-axis (axis). Therefore there are no real roots.

Answer

Real roots No. Complex roots:
;
;
.

For example, for the trinomial \(3x^2+2x-7\), the discriminant will be equal to \(2^2-4\cdot3\cdot(-7)=4+84=88\). And for the trinomial \(x^2-5x+11\), it will be equal to \((-5)^2-4\cdot1\cdot11=25-44=-19\).

The discriminant is denoted by \(D\) and is often used in solving. Also, by the value of the discriminant, you can understand what the graph approximately looks like (see below).

Discriminant and roots of a quadratic equation

The discriminant value shows the number of quadratic equations:
- if \(D\) is positive, the equation will have two roots;
- if \(D\) is equal to zero – there is only one root;
- if \(D\) is negative, there are no roots.

This does not need to be taught, it is not difficult to come to such a conclusion, simply knowing that from the discriminant (that is, \(\sqrt(D)\) is included in the formula for calculating the roots of a quadratic equation: \(x_(1)=\)\( \frac(-b+\sqrt(D))(2a)\) and \(x_(2)=\)\(\frac(-b-\sqrt(D))(2a)\) Let's look at each case more details.

If the discriminant is positive

In this case, the root of it is some positive number, which means \(x_(1)\) and \(x_(2)\) will have different meanings, because in the first formula \(\sqrt(D)\) is added , and in the second it is subtracted. And we have two different roots.

Example : Find the roots of the equation \(x^2+2x-3=0\)
Solution :

Answer : \(x_(1)=1\); \(x_(2)=-3\)

If the discriminant is zero

How many roots will there be if the discriminant is zero? Let's reason.

The root formulas look like this: \(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) and \(x_(2)=\)\(\frac(-b- \sqrt(D))(2a)\) . And if the discriminant is zero, then its root is also zero. Then it turns out:

\(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) \(=\)\(\frac(-b+\sqrt(0))(2a)\) \(=\)\(\frac(-b+0)(2a)\) \(=\)\(\frac(-b)(2a)\)

\(x_(2)=\)\(\frac(-b-\sqrt(D))(2a)\) \(=\)\(\frac(-b-\sqrt(0))(2a) \) \(=\)\(\frac(-b-0)(2a)\) \(=\)\(\frac(-b)(2a)\)

That is, the values ​​of the roots of the equation will be the same, because adding or subtracting zero does not change anything.

Example : Find the roots of the equation \(x^2-4x+4=0\)
Solution :

\(x^2-4x+4=0\)

We write out the coefficients:

\(a=1;\) \(b=-4;\) \(c=4;\)

We calculate the discriminant using the formula \(D=b^2-4ac\)

\(D=(-4)^2-4\cdot1\cdot4=\)
\(=16-16=0\)

Finding the roots of the equation

\(x_(1)=\) \(\frac(-(-4)+\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)

\(x_(2)=\) \(\frac(-(-4)-\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)


We got two identical roots, so there is no point in writing them separately - we write them as one.

Answer : \(x=2\)

Views