A light year is equal to Earth years. Light year

Exploring their own planet, over hundreds of years, people invented more and more new systems for measuring distance segments. As a result, it was decided to consider one meter as the universal unit of length, and measure the long distance in kilometers.

But the advent of the twentieth century confronted humanity with new problem. People began to carefully study space - and it turned out that the vastness of the Universe is so vast that kilometers are simply not suitable here. In conventional units you can still express the distance from the Earth to the Moon or from the Earth to Mars. But if you try to determine how many kilometers the nearest star is from our planet, the number “overgrows” with an unimaginable number of decimal places.

What is 1 light year equal to?

It became obvious that a new unit of measurement was needed to explore the spaces of space - and the light year became it. In one second, light travels 300,000 kilometers. Light year - this is the distance that light will travel in exactly one year - and translated into a more familiar number system, this distance is equal to 9,460,730,472,580.8 kilometers. It is clear that using the laconic “one light year” is much more convenient than using this huge figure in calculations every time.

Of all the stars, Proxima Centauri is closest to us - it is “only” 4.22 light years away. Of course, in terms of kilometers the figure will be unimaginably huge. However, everything is learned in comparison - if you consider that the nearest galaxy called Andromeda is as much as 2.5 million light years away from the Milky Way, the above-mentioned star really begins to seem like a very close neighbor.

By the way, using light years helps scientists understand in which corners of the Universe it makes sense to look for intelligent life, and where sending radio signals is completely useless. After all, the speed of a radio signal is similar to the speed of light - accordingly, a greeting sent towards a distant galaxy will reach its destination only after millions of years. It is more reasonable to expect an answer from closer “neighbors” - objects whose hypothetical response signals will reach earthly devices at least during a person’s lifetime.

1 light year is how many Earth years?

There is a widespread misconception that the light year is a unit of time. In fact, this is not true. The term has nothing to do with earthly years, does not correlate with them in any way and refers solely to the distance that light travels in one earthly year.

It is this definition that is recommended for use in popular science literature. In professional literature, to express large distances instead of light years Parsecs and multiples of units (kilo- and megaparsecs) are commonly used.

Previously (before 1984), a light year was the distance traveled by light in one tropical year, assigned to the epoch 1900.0. The new definition differs from the old one by approximately 0.002%. Since this distance unit is not used for high-precision measurements, practical difference there is no difference between old and new definitions.

Numeric values

A light year is equal to:

  • 9,460,730,472,580,800 meters (approximately 9.5 petameters)

Related units

The following units are used quite rarely, usually only in popular publications:

  • 1 light second = 299,792.458 km (exact)
  • 1 light minute ≈ 18 million km
  • 1 light hour ≈ 1079 million km
  • 1 light day ≈ 26 billion km
  • 1 light week ≈ 181 billion km
  • 1 light month ≈ 790 billion km

Distance in light years

The light year is convenient for qualitatively representing distance scales in astronomy.

Scale Value (St. years) Description
Seconds 4 10 −8 The average distance to the Moon is approximately 380,000 km. This means that a beam of light emitted from the surface of the Earth will take about 1.3 seconds to reach the surface of the Moon.
minutes 1.6·10−5 One astronomical unit is equal to approximately 150 million kilometers. Thus, light travels from the Sun to Earth in approximately 500 seconds (8 minutes 20 seconds).
Watch 0,0006 The average distance from the Sun to Pluto is approximately 5 light hours.
0,0016 Devices of the Pioneer and Voyager series flying beyond solar system, in about 30 years since the launch, they have moved to a distance of about one hundred astronomical units from the Sun, and their response time to requests from Earth is approximately 14 hours.
Year 1,6 The inner edge of the hypothetical Oort cloud is located at 50,000 AU. e. from the Sun, and the outer one - 100,000 a. e. It will take about a year and a half for light to travel the distance from the Sun to the outer edge of the cloud.
2,0 The maximum radius of the region of gravitational influence of the Sun (“Hill Spheres”) is approximately 125,000 AU. e.
4,22 The closest star to us (not counting the Sun), Proxima Centauri, is located at a distance of 4.22 light years. of the year .
Millennium 26 000 The center of our Galaxy is approximately 26,000 light-years from the Sun.
100 000 The diameter of the disk of our Galaxy is 100,000 light years.
Millions of years 2.5 10 6 The closest spiral galaxy to us, M31, the famous Andromeda Galaxy, is 2.5 million light years away.
3.14 10 6 The Triangulum Galaxy (M33) is located 3.14 million light-years away and is the most distant stationary object visible to the naked eye.
5.9 10 7 The closest cluster of galaxies, the Virgo cluster, is 59 million light-years away.
1.5 10 8 - 2.5 10 8 The “Great Attractor” gravitational anomaly is located at a distance of 150-250 million light years from us.
Billions of years 1.2 10 9 The Great Wall of Sloan is one of the largest formations in the Universe, its dimensions are about 350 Mpc. It will take about a billion years for light to travel from end to end.
1.4 10 10 The size of the causally connected region of the Universe. It is calculated from the age of the Universe and the maximum speed of information transmission - the speed of light.
4.57 10 10 The accompanying distance from the Earth to the edge of the observable Universe in any direction; accompanying radius of the observable Universe (within the framework of the standard cosmological model Lambda-CDM).

Galactic distance scales

  • An astronomical unit with good accuracy is equal to 500 light seconds, that is, light reaches the Earth from the Sun in about 500 seconds.

see also

Links

  1. International Organization for Standardization. 9.2 Measurement units

Notes


Wikimedia Foundation. 2010.

See what “Light Year” is in other dictionaries:

    An extra-system unit of length used in astronomy; 1 S.g. is equal to the distance traveled by light in 1 year. 1 S. g. = 0.3068 parsec = 9.4605 1015 m. Physical encyclopedic Dictionary. M.: Soviet encyclopedia. Chief Editor A. M. Prokhorov... ... Physical encyclopedia

    LIGHT YEAR, a unit of astronomical distance equal to the distance that light travels in outer space or in a VACUUM in one tropical year. One light year is equal to 9.46071012 km... Scientific and technical encyclopedic dictionary

    LIGHT YEAR, a unit of length used in astronomy: the path traveled by light in 1 year, i.e. 9.466?1012 km. The distance to the nearest star (Proxima Centauri) is approximately 4.3 light years. The most distant stars in the Galaxy are located on... ... Modern encyclopedia

    Unit of interstellar distances; the path that light travels in a year, i.e. 9.46? 1012 km... Big Encyclopedic Dictionary

    Light year- LIGHT YEAR, a unit of length used in astronomy: the path traveled by light in 1 year, i.e. 9.466´1012 km. The distance to the nearest star (Proxima Centauri) is approximately 4.3 light years. The most distant stars in the Galaxy are located on... ... Illustrated Encyclopedic Dictionary

    An extra-system unit of length used in astronomy. 1 light year is the distance that light travels in 1 year. 1 light year is equal to 9.4605E+12 km = 0.307 pc... Astronomical Dictionary

    Unit of interstellar distances; the path that light travels in a year, that is, 9.46·1012 km. * * * LIGHT YEAR LIGHT YEAR, a unit of interstellar distances; the path that light travels in a year, i.e. 9.46×1012 km... encyclopedic Dictionary

    Light year- a unit of distance equal to the path traveled by light in one year. A light year is equal to 0.3 parsecs... Concepts modern natural science. Glossary of basic terms

On February 22, 2017, NASA reported that 7 exoplanets were found around the single star TRAPPIST-1. Three of them are in the range of distances from the star in which the planet can have liquid water, and water is a key condition for life. It is also reported that this star system is located 40 light years from Earth.

This message caused a lot of noise in the media; some even thought that humanity was one step away from building new settlements near nova, but that's not true. But 40 light years is a lot, it’s a LOT, it’s too many kilometers, that is, it’s a monstrously colossal distance!

The third is known from the physics course escape velocity- this is the speed that a body must have at the surface of the Earth in order to go beyond the solar system. The value of this speed is 16.65 km/sec. Conventional orbital spaceships start at a speed of 7.9 km/sec and revolve around the Earth. In principle, a speed of 16-20 km/sec is quite accessible to modern earthly technologies, but no more!

Humanity has not yet learned to accelerate spaceships faster than 20 km/sec.

Let's calculate how many years it will take a starship flying at a speed of 20 km/sec to travel 40 light years and reach the star TRAPPIST-1.
One light year is the distance that a beam of light travels in a vacuum, and the speed of light is approximately 300 thousand km/sec.

A human-made spaceship flies at a speed of 20 km/sec, that is, 15,000 times slower than the speed of light. Such a ship will cover 40 light years in a time equal to 40*15000=600000 years!

An Earth ship (at the current level of technology) will reach the star TRAPPIST-1 in about 600 thousand years! Homo sapiens has existed on Earth (according to scientists) for only 35-40 thousand years, but here it is as much as 600 thousand years!

In the near future, technology will not allow humans to reach the star TRAPPIST-1. Even promising engines (ion, photon, cosmic sails, etc.), which do not exist in earthly reality, are estimated to be able to accelerate the ship to a speed of 10,000 km/sec, which means that the flight time to the TRAPPIST-1 system will be reduced to 120 years . This is already a more or less acceptable time for flight using suspended animation or for several generations of immigrants, but today all these engines are fantastic.

Even the nearest stars are still too far from people, too far, not to mention the stars of our Galaxy or other galaxies.

The diameter of our Milky Way galaxy is approximately 100 thousand light years, that is, the journey from end to end for a modern Earth ship will be 1.5 billion years! Science suggests that our Earth is 4.5 billion years old, and multicellular life is approximately 2 billion years old. The distance to the closest galaxy to us - the Andromeda Nebula - 2.5 million light years from Earth - what monstrous distances!

As you can see, of all the living people, no one will ever set foot on the earth of a planet near another star.

Do you know why astronomers don't use light years to calculate distances to distant objects in space?

A light year is a non-systemic unit of measurement of distances in outer space. It is widely used in popular books and textbooks on astronomy. However, in professional astrophysics this figure is used extremely rarely and is often used to determine distances to nearby objects in space. The reason for this is simple: if you determine the distance in light years to distant objects in the Universe, the number will turn out to be so huge that it will be impractical and inconvenient to use it for physical and mathematical calculations. Therefore, instead of the light year in professional astronomy, a unit of measurement is used, which is much more convenient to operate when performing complex mathematical calculations.

Definition of the term

We can find the definition of the term “light year” in any astronomy textbook. A light year is the distance a ray of light travels in one Earth year. Such a definition may satisfy an amateur, but a cosmologist will find it incomplete. He will note that a light year is not just the distance that light travels in a year, but the distance that a ray of light travels in a vacuum in 365.25 Earth days, without being influenced by magnetic fields.

A light year is equal to 9.46 trillion kilometers. This is exactly the distance a ray of light travels in a year. But how did astronomers achieve this? precise definition radial path? We'll talk about this below.

How was the speed of light determined?

In ancient times, it was believed that light travels throughout the Universe instantly. However, starting in the seventeenth century, scientists began to doubt this. Galileo was the first to doubt the above proposed statement. It was he who tried to determine the time it takes for a ray of light to travel a distance of 8 km. But due to the fact that such a distance was negligibly small for such a quantity as the speed of light, the experiment ended in failure.

The first major shift in this matter was the observation of the famous Danish astronomer Olaf Roemer. In 1676, he noticed a difference in the time of eclipses depending on the approach and distance of the Earth to them in outer space. Roemer successfully connected this observation with the fact that the further the Earth moves away from, the longer it takes the light reflected from them to travel the distance to our planet.

The essence this fact Roemer caught it accurately, but he was never able to calculate a reliable value for the speed of light. His calculations were incorrect because in the seventeenth century he could not have accurate data on the distance from the Earth to the other planets of the solar system. These data were determined a little later.

Further advances in research and the definition of the light year

In 1728, the English astronomer James Bradley, who discovered the effect of aberration in stars, was the first to calculate the approximate speed of light. He determined its value to be 301 thousand km/s. But this value was inaccurate. More advanced methods for calculating the speed of light were produced without regard to cosmic bodies - on Earth.

Observations of the speed of light in a vacuum using a rotating wheel and a mirror were made by A. Fizeau and L. Foucault, respectively. With their help, physicists managed to get closer to the real value of this quantity.

Exact speed of light

Scientists were able to determine the exact speed of light only in the last century. Based on Maxwell's theory of electromagnetism, using modern laser technology and calculations corrected for the refractive index of the ray flux in air, scientists were able to calculate the exact speed of light as 299,792.458 km/s. Astronomers still use this quantity. Further determining the daylight hours, month and year was already a matter of technology. Through simple calculations, scientists arrived at a figure of 9.46 trillion kilometers—that’s exactly how long it would take a beam of light to travel the length of the Earth’s orbit.

One way or another, in my Everyday life we measure distances: to the nearest supermarket, to a relative’s house in another city, to and so on. However, when it comes to the vastness of outer space, it turns out that using familiar values ​​like kilometers is extremely irrational. And the point here is not only in the difficulty of perceiving the resulting gigantic values, but in the number of numbers in them. Even writing so many zeros will become a problem. For example, the shortest distance from Mars to Earth is 55.7 million kilometers. Six zeros! But the red planet is one of our closest neighbors in the sky. How to use the cumbersome numbers that result when calculating the distance even to the nearest stars? And right now we need such a value as a light year. How much is it equal? Let's figure it out now.

The concept of a light year is also closely related to relativistic physics, in which the close connection and mutual dependence of space and time was established at the beginning of the 20th century, when the postulates of Newtonian mechanics collapsed. Before this distance value, larger scale units in the system

were formed quite simply: each subsequent one was a collection of units of a smaller order (centimeters, meters, kilometers, and so on). In the case of a light year, distance was tied to time. Modern science It is known that the speed of light propagation in a vacuum is constant. Moreover, she is maximum speed in nature, acceptable in modern relativistic physics. It was these ideas that formed the basis of the new meaning. A light year is equal to the distance a ray of light travels in one Earth calendar year. In kilometers it is approximately 9.46 * 10 15 kilometers. Interestingly, a photon travels the distance to the nearest Moon in 1.3 seconds. It's about eight minutes to the sun. But the next closest stars, Alpha, are already about four light years away.

Just a fantastic distance. There is an even larger measure of space in astrophysics. A light year is equal to about one-third of a parsec, an even larger unit of measurement of interstellar distances.

Speed ​​of light propagation under different conditions

By the way, there is also such a feature that photons can at different speeds spread into different environments. We already know how fast they fly in a vacuum. And when they say that a light year is equal to the distance covered by light in a year, they mean empty outer space. However, it is interesting to note that under other conditions the speed of light may be lower. For example, in air, photons scatter at a slightly lower speed than in vacuum. Which one depends on the specific state of the atmosphere. Thus, in a gas-filled environment, the light year would be somewhat smaller. However, it would not differ significantly from the accepted one.

Views