Основные метеорологические факторы. Метеорологические факторы и их влияние на организм

МЕТЕОРОЛОГИЧЕСКИЕ ФАКТОРЫ - группа природных факторов внешней среды, воздействующих, наряду с космическими (радиационными) и теллурическими (земными), на организм человека. Непосредственное влияние на человека оказывают физические и химические факторы атмосферы.

К химическим факторам относятся газы и различные примеси. К газам, содержание которых в атмосфере почти постоянно, относятся азот (78,08 об.%), кислород (20,95), аргон (0,93), водород (0,00005), неон (0,0018), гелий (0,0005), криптон (0,0001), ксенон (0,000009). Содержание других газов в атмосфере значительно меняется. Так, содержание углекислого газа колеблется от 0,03 до 0,05 %, а вблизи некоторых промышленных предприятий и углекислых минеральных источников может повышаться до 0,07-0,16 %. Образование озона связано с грозовыми явлениями и процессами окисления некоторых органических веществ, поэтому его содержание у поверхности Земли ничтожно и весьма непостоянно. В основном озон образуется на высоте 20-40 км под влиянием УФ-лучей Солнца и, задерживая коротковолновую часть УФ-спектра (УФ-С с длиной волн короче 280 нм), предохраняет живое вещество от гибели, т. е. играет роль гигантского фильтра, защищающего жизнь на Земле. Благодаря химической активности озон обладает выраженными бактерицидными и дезодорирующими свойствами. В атмосферном воздухе могут содержаться в незначительных количествах и другие газы: аммиак, хлор, сероводород, оксид углерода, различные соединения азота и др., являющиеся в основном результатом загрязнения воздуха отходами промышленных предприятий. Из почвы в атмосферу поступает эманация радиоактивных элементов и газообразные продукты обмена почвенных бактерий. В воздухе могут содержаться ароматические вещества и фитонциды, выделяемые растениями. Многие из них обладают бактерицидными свойствами. Воздух лесов содержит в 200 раз меньше бактерий, чем воздух городов. Наконец, в воздухе имеются взвешенные частицы в жидком и твердом состоянии: морские соли, органические вещества (бактерии, споры, пыльца растений и др.), минеральные частицы вулканического и космического происхождения, дым и т. д. Содержание этих веществ в воздухе определяется различными факторами - особенностями подстилающей поверхности, характером растительности, наличием морей и т. д.

Химические вещества, содержащиеся в воздухе, могут активно влиять на организм. Так, морские соли, содержащиеся в приморском воздухе, ароматические вещества, выделяемые растениями (монарда, базилик, розмарин, шалфей и др.), фитонциды чеснока и т. д. благоприятно влияют на больных с заболеваниями верхних дыхательных путей и легких. Летучие вещества, выделяемые тополем, дубом, березой, способствуют повышению окислительно-восстановительных процессов в организме, а летучие вещества сосны, ели угнетают тканевое дыхалие. Токсическое действие на организм оказывают летучие вещества дурмана, хмеля, магнолии, черемухи и других растений. Высокие концентрации терпенов в воздухе сосновых лесов могут оказывать неблагоприятное воздействие на больных с сердечно-сосудистыми заболеваниями. Имеются данные о зависимости развития отрицательных реакций от повышения содержания в воздухе озона.

Из всех химических факторов воздуха абсолютное жизненное значение имеет кислород. При подъеме в гору снижается парциальное давление кислорода в воздухе, что приводит к явлениям кислородной недостаточности и развитию различного рода компенсаторных реакций (увеличение объема дыхания и кровообращения, содержания эритроцитов и гемоглобина и т. д.). В условиях равнины относительные колебания парциального давления кислорода весьма незначительны, однако относительные изменения его плотности более существенны, так как зависят от соотношения давления, температуры и влажности воздуха. Повышение температуры и влажности, снижение давления ведут к понижению парциальной плотности кислорода, а снижение температуры, влажности и повышение давления - к увеличению плотности кислорода. Изменения температуры от -30 до +30°C, давления в пределах 933-1040 мбар, относительной влажности от 0 до 100 % приводит к изменению парциальной плотности кислорода в пределах 238-344 г/м 3 , тогда как парциальное давление кислорода в этих условиях колеблется в пределах 207-241 мбар. По мнению В. Ф. Овчаровой (1966, 1975, 1981, 1985), изменение парциальной плотности кислорода может вызывать биотропные эффекты гипоксического и гипотензивого характера при снижении и тонизирующего и спастического - при повышении. Слабое изменение парциальной плотности кислорода ±5 г/м 3 , умеренное ±5,1-10 г/м 3 , выраженное ±10,1-20 г/м 3 , резкое ±20 г/м 3 .

К физическим метеорологическим факторам относятся температура и влажность воздуха, атмосферное давление, облачность, осадки, ветер.

Температура воздуха определяется преимущественно солнечной радиацией, в связи с чем отмечаются периодические (суточные и сезонные) температурные колебания. Кроме того, могут быть внезапные (непериодические) изменения температуры, связанные с общими процессами циркуляции атмосферы. Для характеристики термического режима в климатолечении пользуются величинами среднесуточных, месячных и годовых температур, а также максимальных и минимальных значений. Для определения температурных изменений пользуются такой величиной, как межсуточная изменчивость температуры (разность среднесуточной температуры двух соседних дней, а в оперативной практике - разность значений двух последовательных утренних сроков измерения). Слабым похолоданием или потеплением считается изменение среднесуточной температуры на 2-4°C, умеренным похолоданием или потеплением - на 4-6°C, резким - более 6°C.

Воздух нагревается путем передачи ему тепла от земной поверхности, которая поглощает солнечные лучи. Эта передача тепла происходит главным образом путем конвекции, т. е. вертикального перемещения нагретого от контакта с подстилающей поверхностью воздуха, на место которого опускается более холодный воздух из верхних слоев. Таким путем нагревается слой воздуха толщиной около 1 км. Выше, в тропосфере (нижнем слое атмосферы), теплообмен определяется турбулентностью планетарного масштаба, т. е. перемешиванием воздушных масс; перед циклоном теплый воздух выносится из низких широт в высокие, в тылу циклонов холодные воздушные массы из высоких широт вторгаются в низкие. Распределение температуры по высоте определяется характером конвекции. При отсутствии конденсации водяных паров температура воздуха понижается на ГС с повышением на каждые 100 м, а при конденсации водяных паров - только на 0,4 °C. По мере удаления от поверхности Земли температура в тропосфере снижается в среднем на 0,65 °C на каждые 100 м высоты (вертикальный градиент температуры).

Температура воздуха данной местности зависит от ряда физико-географических условий. При наличии обширных водных пространств суточные и годовые колебания температуры в прибрежных районах уменьшаются. В горных местностях, помимо высоты над уровнем моря, имеет значение расположение горных хребтов и долин, доступность местности ветрам и т. д. Наконец, играет роль характер ландшафта. Поверхность, покрытая растительностью, нагревается днем и охлаждается ночью меньше, чем открытая. Температура является одним из важных факторов характеристики погоды, сезонов. По классификации Федорова - Чубукова выделяются три большие группы погод на основе температурного фактора: безморозные, с переходом температуры воздуха через 0°C и морозные.

Неблагоприятное влияние на человека могут оказывать резкие внезапные колебания температуры и экстремальные (максимальные и минимальные) температуры, вызывающие патологические состояния (обморожение, простуда, перегрев и т. д.). Классическим примером этого является массовое заболевание (40 000 человек) гриппом в Петербурге, когда в одну из январских ночей 1780 г. температура повысилась от -43,6 до +6 °C.

Атмосферное давление измеряется в миллибарах (мбар), паскалях (Па) или миллиметрах ртутного столба (мм рт. ст.). 1 мбар=100 Па. В средних широтах на уровне моря давление воздуха составляет в среднем 760 мм рт. ст., или 1013 мбар (101,3 кПа). По мере подъема давление снижается на 1 мм рт. ст. (0,133 кПа) на каждые 11 м высоты. Давление воздуха характеризуется сильными непериодическими колебаниями, связанными с изменениями погоды, при этом колебания давления достигают 10-20 мбар (1-2 кПа), а в резко континентальных районах - до 30 мбар (3 кПа). Слабым изменением давления считается понижение или повышение его среднесуточной величины на 1-4 мбар (0,1-0,4 кПа), умеренным - на 5-8 мбар (0,5-0,8 кПа), резким - более 8 мбар (0,8 кПа). Значительные перепады атмосферного давления могут привести к различным патологическим реакциям, особенно у больных.

Влажность воздуха характеризуется упругостью пара (в мбар) и относительной влажностью, то есть процентным отношением упругости (парциального давления) водяного пара в атмосфере к упругости насыщающего водяного пара при той же температуре. Иногда упругость водяного пара называют абсолютной влажностью, которая на самом деле представляет собой плотность водяного пара в воздухе и, будучи выражена в г/м 3 , по величине близка к упругости пара в мм рт. ст. Разность между полностью насыщающей и фактической упругостью водяного пара при данных температуре и давлении называют дефицитом влажности (недостатком насыщения). Кроме того, выделяют так называемое физиологическое насыщение, т. е. упругость водяных паров при температуре человеческого тела (37 °C). Оно равно 47,1 мм рт. ст. (6,28 кПа). Физиологический дефицит насыщения составит разницу между упругостью водяных паров при температуре 37 °C и упругостью водяного пара в наружном воздухе. Летом упругость пара значительно выше, а дефицит насыщения меньше, чем зимой. В метеосводках обычно указывается относительная влажность, так как ее изменение может непосредственно ощущаться человеком. Воздух считается сухим при влажности до 55 %, умеренно сухим при 56-70 %, влажным - при 71-85%, сильно влажным (сырым)- свыше 85%. Относительная влажность изменяется в противоположном направлении по отношению к сезонным и суточным колебаниям температуры.

Влажность воздуха в сочетании с температурой оказывает выраженное влияние на организм. Наиболее благоприятными для человека являются условия, при которых относительная влажность равна 50 %, температура-17-19 °C, а скорость ветра не превышает 3 м/с. Повышение влажности воздуха, препятствуя испарению, делает тягостной жару (условия духоты) и усиливает действие холода, способствуя большей потере тепла путем проведения (влажно-морозные условия). Холод и жара в сухом климате переносятся легче, чем во влажном.

При понижении температуры содержащаяся в воздухе влага конденсируется, и образуется туман. Он возникает также при смешении теплого влажного воздуха с холодным и влажным. В промышленных районах туман может поглощать токсические газы, которые, вступая в химическую реакцию с водой, образуют сернистые вещества (токсические смоги). Это может привести к массовым отравлениям населения. При влажном воздухе опасность воздушной инфекции выше, так как капельки влаги, в которых могут содержаться возбудители болезни, обладают большей способностью к диффузии, чем сухая пыль, и поэтому могут попадать в самые отдаленные участки легкого.

Облачность образуется над земной поверхностью путем конденсации и сублимации содержащихся в воздухе водяных паров. Образующиеся при этом облака могут состоять из водяных капелек или кристаллов льда. Облачность измеряют по 11-балльной шкале, согласно которой 0 соответствует полному отсутствию облаков, а 10 баллов - сплошной облачности. Погода расценивается как ясная и малооблачная при 0-5 баллах нижней облачности, облачная - при 6-8 баллах, пасмурная - при 9-10 баллах. Характер облаков на разной высоте различен. Облака верхнего яруса (с основанием выше 6 км) состоят из ледяных кристаллов, легких, прозрачных, белоснежных, почти не задерживающих прямых солнечных лучей и в то же время, диффузно отражая их, заметно увеличивающих приток радиации от небесного свода (рассеянной радиации). Облака среднего яруса (2-6 км) состоят из переохлажденных капель воды или смеси ее с ледяными кристаллами и снежинками; они более плотные, приобретают сероватый оттенок, солнце просвечивает их слабо или вообще не просвечивает. Облака нижнего яруса имеют вид низких серых тяжелых гряд, валов или пелены, закрывающей небо сплошным покровом, солнце обычно их не просвечивает. Суточные изменения облачности не носят строго закономерного характера, а годовой ход ее зависит от общих физико-географических условий и особенностей ландшафта. Облачность оказывает влияние на световой режим и является причиной выпадения атмосферных осадков, которые резко нарушают суточный ход температуры и влажности воздуха. Эти два фактора, если они резко выражены, и могут оказывать неблагоприятное влияние на организм при облачной погоде.

Осадки могут быть жидкими (дождь) или твердыми (снег, крупа, град). Характер осадков зависит от условий их образования. Если восходящие воздушные потоки при большой абсолютной влажности достигают больших высот, для которых характерны низкие температуры, то водяные пары сублимируются и выпадают в виде крупы, града, а растаявшие - в виде ливневого дождя. На распределение осадков влияют физико-географические особенности местности. Внутри континентов количество осадков обычно меньше, чем на побережье. На склонах гор, обращенных к морю, их обычно больше, чем на противоположных. Дождь играет положительную санитарную роль: он очищает воздух, смывает пыль; капли, содержащие микробы, опускаются на землю. В то же время дождь, особенно затяжной, ухудшает условия климатотерапии. Снежный покров, имея высокую отражательную способность (альбедо) к коротковолновому излучению, существенно ослабляет процессы аккумуляции солнечного тепла, усиливая зимние морозы. Особенно высоко альбедо снега к УФ-излучению (до 97 %), что повышает эффективность зимней гелиотерапии, особенно в горах. Нередко кратковременный дождь и снег улучшают состояние метеолабильных людей, способствуют прекращению имевшихся до этого жалоб, связанных с погодой. Погода считается без осадков, если за сутки их суммарное количество не достигает 1 мм.

Ветер характеризуется направлением и скоростью. Направление ветра определяется той стороной света, откуда он дует (север, юг, запад, восток). Кроме этих основных направлений выделяются промежуточные, составляющие в сумме 16 румбов (северо-восточное, северо-западное, юго-восточное и т. д.). Сила ветра определяется по 13-балльной шкале Симпсона-Бофорта, по которой 0 соответствует штилю (скорость по анемометру 0-0,5 м/с), 1-тихому ветру (0,6- 1,7), 2 - легкому (1,8-3,3), 3 - слабому (3,4-5,2), 4 - умеренному (5,3-7,4), 5 -свежему (7,5-9,8), 6 -сильному (9,9-12,4), 7 - крепкому (12,5-15,2), 8 - очень крепкому (15,3-18,2), 9-шторму (18,3-21,5), 10 - сильному шторму (21,6-25,1), 11 - жестокому шторму (25,2-29), 12 - урагану (более 29 м/с). Резкое кратковременное усиление ветра до 20 м/с и более называется шквалом.

Причиной ветра является разница давления: воздух перемещается из области с высоким давлением в места с низким давлением. Чем больше разница давлений, тем сильнее ветер. Создаются воздушные циркуляции с различной периодичностью, имеющие большое значение для формирования микроклимата и оказывающие определенное воздействие на человека. Неоднородность давления в горизонтальных направлениях обусловлена неоднородностью теплового режима на земной поверхности. Летом суша нагревается сильнее, чем водная поверхность, вследствие чего воздух над сушей от нагревания расширяется, поднимается вверх, где растекается в горизонтальных направлениях. Это приводит к уменьшению общей массы воздуха и, следовательно, к понижению давления у земной поверхости. Поэтому летом сравнительно прохладный и влажный морской воздух в нижних слоях тропосферы устремляется с моря на сушу, а зимой сухой холодный воздух - с суши к морю. Такие сезонные ветры (муссоны) наиболее выражены в Азии, на границе крупнейшего материка и океана. В пределах СССР они чаще наблюдаются на Дальнем Востоке. Такая же смена ветров наблюдается в прибрежных районах в течение суток - это бризы, т. е. ветры, дующие днем с моря на сушу, а ночью - с суши на море, распространяющиеся на 10-15 км по обе стороны береговой линии. На южных приморских курортах летом в дневное время они уменьшают ощущение жары. В горах возникают горно-долинные ветры, дующие днем вверх по склонам (долинам), а ночью - вниз, с гор. Они возникают в основном в теплое время года, в ясную тихую погоду и оказывают благоприятное влияние на человека. В горных местностях, когда на пути воздушного течения располагаются горы с большой разницей давления между той и другой стороной горного хребта, образуется своеобразный теплый и сухой ветер, дующий с гор,- фён. В этом случае при подъеме воздух теряет влагу в виде осадков и несколько охлаждается, а перевалив за горный хребет и опускаясь, значительно нагревается. В результате температура воздуха при фёне может за небольшой промежуток времени (15-30 мин) повыситься на 10-15 °C и более. Фёны обычно возникают зимой и весной. Наиболее часто среди курортных зон СССР они формируются в Цхалтубо. Сильные фёны вызывают подавленное, раздраженное состояние, ухудшают дыхание. В случае перемещения воздуха в горизонтальном направлении из жарких и очень сухих местностей возникают суховеи, при которых влажность может падать до 10-15%. Бора - горный ветер, наблюдающийся в холодное время года в местностях, где невысокие горные хребты подходят близко к морю. Ветер порывистый, сильный (до 20-40 м/с), продолжительность 1-3 сут, часто вызывает метеопатические реакции; бывает в Новороссийске, на побережье озера Байкал (сарма), на средиземноморском побережье Франции (мистраль).

При низких температурах ветер усиливает теплоотдачу, что может привести к переохлаждению организма. Чем ниже температура воздуха, тем тяжелее переносится ветер. В жаркое время ветер усиливает кожное испарение и улучшает самочувствие. Сильный ветер оказывает неблагоприятное влияние, утомляет, раздражает нервную систему, затрудняет дыхание, небольшой ветер - тонизирует и стимулирует организм.

Электрическое состояние атмосферы определяется напряженностью электрического поля, электропроводностью воздуха, ионизацией, электрическими разрядами в атмосфере. Земля имеет свойства отрицательно заряженного проводника, а атмосфера - положительно заряженного. Разность потенциалов Земли и точки, находящейся на высоте 1 м (градиент электрического потенциала), составляет в среднем 130 В. Напряжение электрического поля атмосферы имеет большую изменчивость в зависимости от метеорологических явлений, в особенности от осадков, облачности, гроз и др., а также от времени года, географической широты и высоты местности. При прохождении облаков атмосферное электричество в течение 1 мин меняется в значительных пределах (от +1200 до -4000 В/м).

Электропроводность воздуха обусловлена количеством содержащихся в нем положительно и отрицательно заряженных атмосферных ионов (аэроионов). В 1 см 3 воздуха каждую секунду в среднем образуется 12 пар ионов, в результате чего в нем постоянно присутствует около 1000 пар нонов. Коэффициент униполярности (отношение числа положительно заряженных ионов к числу отрицательно заряженных) во всех зонах, кроме горных, выше 1. Перед грозой накапливаются положительные, а после грозы - отрицательные ионы. При конденсации водяного пара преобладают положительные ионы, при испарении - отрицательные.

Параметры атмосферного электричества имеют суточную и сезонную периодичность, которая, однако, весьма часто перекрывается более мощными непериодическими колебаниями его, вызванными сменой воздушных масс.

Атмосферные процессы изменяются во времени и пространстве, являясь одним из основных факторов погодо- и климатообразования. Основной формой общей циркуляции атмосферы во внетропических широтах является циклоническая деятельность (возникновение, развитие и перемещение циклонов и антициклонов). При этом резко изменяется давление, вызывая круговое движение воздуха от периферии к центру (циклон) или от центра к периферии (антициклон). Циклоны и антициклоны различаются и по параметрам атмосферного электричества. При повышении давления, особенно на гребне, который является периферической частью антициклона, градиент потенциала резко возрастает (до 1300 В/м). Электромагнитные импульсы распространяются со скоростью света и улавливаются с дальних расстояний. В связи с этим они являются не только признаком развития процессов в атмосфере, но и определенным звеном в его развитии. Опережая изменение основных метеорологических факторов при прохождении фронтов, они могут быть первыми раздражителями, вызывая различного рода метеопатические реакции до видимого изменения погоды.

Главными метеорологическими климатообразующими факторами являются масса и химический состав атмосферы.

Масса атмосферы определяет ее механическую и тепловую инерцию, ее возможности как теплоносителя, способного передавать тепло от нагретых областей к охлажденным. Без атмосферы на Земле существовал бы «лунный климат», т.е. климат лучистого равновесия.

Атмосферный воздух представляет собой смесь газов, одни из которых имеют почти постоянную концентрацию, другие – переменную. Кроме того, в атмосфере содержатся различные жидкие и твердые аэрозоли, которые также имеют существенное значение в формировании климата.

Основными составляющими атмосферного воздуха являются азот, кислород и аргон. Химический состав атмосферы остается постоянным примерно до высоты 100 км, выше начинает сказываться гравитационное разделение газов и относительное содержание более легких газов увеличивается.

Для климата особенно важны переменные по содержанию термодинамически активные примеси, оказывающие большое влияние на многие процессы в атмосфере, такие как вода, диоксид углерода, озон, диоксид серы и диоксид азота.

Яркий пример термодинамически активной примеси – вода в атмосфере. Концентрация этой воды (удельная влажность, к которой в облаках добавляется удельная водность) весьма изменчива. Водяной пар вносит ощутимый вклад в плотность воздуха, стратификацию атмосферы и особенно во флуктуации и турбулентные потоки энтропии. Он способен конденсироваться (или сублимироваться) на имеющихся в атмосфере частицах (ядрах), образуя облака и туманы, а также выделяя большие количества тепла. Водяной пар и особенно облачность резко влияют на потоки коротковолнового и длинноволнового излучений в атмосфере. Водяной пар обусловливает и парниковый эффект, т.е. способность атмосферы пропускать солнечную радиацию и поглощать тепловое излучение подс-тилающей поверхности и нижележащих атмосферных слоев. Благодаря этому температура в атмосфере растет с глубиной. Наконец, в облаках может иметь место коллоидальная неустойчивость, вызывающая коагуляцию облачных частиц и выпадение осадков.

Другой важной термодинамически активной примесью является углекислый газ, или диоксид углерода. Он вносит существенный вклад в парниковый эффект, поглощая и переизлучая энергию длинноволновой радиации. В прошлом могли происходить значительные колебания в содержании углекислого газа, что должно было отразиться на климате.

Влияние твердых искусственных и естественных аэрозолей, содержащихся в атмосфере, еще недостаточно хорошо изучено. Источниками твердых аэрозолей на Земле являются пустыни и полупустыни, области активной вулканической деятельности, а также промышленно развитые районы.

Океан также поставляет незначительное количество аэрозолей – частичек морской соли. Крупные частицы сравнительно быстро выпадают из атмосферы, тогда как самые мелкие остаются в атмосфере длительное время.

Аэрозоль влияет на потоки лучистой энергии в атмосфере несколькими путями. Во-первых, частицы аэрозоля облегчают образование облаков и тем самым увеличивают альбедо, т.е. долю отраженной и безвозвратно потерянной для климатической системы солнечной энергии. Во-вторых, аэрозоль рассеивает значительную часть солнечной радиации, так что часть рассеянной радиации (очень небольшая) также теряется для климатической системы. Наконец, некоторая часть солнечной энергии поглощается аэрозолями и переизлучается как к поверхности Земли, так и в космос.

В течение долгой истории Земли количество естественного аэрозоля существенно колебалось, поскольку известны периоды повышенной тектонической активности и, наоборот, периоды отно-сительного затишья. Были и такие периоды в истории Земли, когда в жарких сухих климатических поясах располагались значительно более обширные массивы суши и, наоборот, в этих поясах преобладала океаническая поверхность. В настоящее время, как и в случае углекислого газа, все большее значение приобретает искусственный аэрозоль – продукт хозяйственной деятельности человека.

К термодинамически активным примесям относится также озон. Он присутствует в слое атмосферы от поверхности Земли до высоты 60–70 км. В самом нижнем слое 0–10 км его содер-жание незначительно, затем оно быстро увеличивается и достигает максимума на высоте 20–25 км. Далее содержание озона быстро уменьшается, и на высоте 70 км оно уже в 1000 раз меньше, чем даже у поверхности. Такое вертикальное распределение озона связано с процессами его образования. Озон образуется в основном в результате фотохимических реакций под действием несущих высокую энергию фотонов, принадлежащих крайней ультрафиолетовой части солнечного спектра. При этих реакциях появляется атомарный кислород, который соединяется затем с молекулой кислорода и образует озон. Одновременно происходят реакции распада озона при поглощении им солнечной энергии и при соударениях его молекул с атомами кислорода. Эти процессы вместе с процессами диффузии, перемешивания и переноса приводят к описанному выше равновесному вертикальному профилю содержания озона.

Несмотря на столь незначительное содержание, его роль исключительно велика и не только для климата. Благодаря исключительно интенсивному поглощению лучистой энергии при процессах его образования и (в меньшей степени) распадания, в верхней части слоя максимального содержания озона – озоносферы – происходит сильное разогревание (максимум содержания озона находится несколько ниже, куда он попадает в результате диффузии и перемешивания). Из всей солнечной энергии, падающей на верхнюю границу атмосферы, озон поглощает около 4%, или 6·10 27 эрг/сут. При этом озоносфера поглощает ультрафиолетовую часть излучения с длиной волны менее 0,29 мкм, которая оказывает губительное действие на живые клетки. При отсутствии этого озонного экрана, по-видимому, не могла бы возникнуть жизнь на Земле, по крайней мере в известных нам формах.

Океан, являющийся неотъемлемой частью климатической системы, играет в ней исключительно важную роль. Первичным свойством океана, так же как и атмосферы, является масса. Однако для климата существенно и то, на какой части поверхности Земли эта масса размещается.

Среди термодинамически активных примесей в океане можно назвать растворенные в воде соли и газы. Количество растворенных солей влияет на плотность морской воды, которая при данном давлении зависит, таким образом, не только от температуры, но и от солености. Это значит, что соленость наряду с температурой определяет плотностную стратификацию, т.е. делает ее в одних случаях устойчивой, а в других приводит к конвекции. Нелинейная зависимость плотности от температуры может приводить к любопытному явлению, получившему название уплотнения при смешении. Температура максимальной плотности пресной воды равна 4°С, более теплая и более холодная вода имеет меньшую плотность. При перемешивании двух объемов таких более легких вод смесь может оказаться более тяжелой. Если ниже окажется вода с меньшей плотностью, то перемешанная вода может начать погружаться. Однако область температур, при которых это явление происходит, в пресной воде очень узкая. Наличие растворенных солей в океанской воде увеличивает вероятность такого явления.

Растворенные соли изменяют многие физические характеристики морской воды. Так, коэффициент термического расширения воды увеличивается, а теплоемкость при постоянном давлении уменьшается, понижается температура замерзания и максимальной плотности. Соленость несколько понижает упругость насыщающего пара над водной поверхностью.

Важная способность океана – возможность растворять большое количество углекислого газа. Это делает океан емким резервуаром, который в одних условиях может поглощать избыток атмос-ферного углекислого газа, в других – выделять углекислый газ в атмосферу. Значение океана как резервуара углекислоты еще более возрастает из-за существования в океане так называемой карбонатной системы, которая подключает огромные количества углекислого газа, содержащегося в современных отложениях известняков.


Оглавление
Климатология и метеорология
ДИДАКТИЧЕСКИЙ ПЛАН
Метеорология и климатология
Атмосфера, погода, климат
Метеорологические наблюдения
Применение карт
Метеорологическая служба и Всемирная Метеорологическая Организация (ВМО)
Климатообразующие процессы
Астрономические факторы
Геофизические факторы
Метеорологические факторы
О солнечной радиации
Тепловое и лучистое равновесие Земли
Прямая солнечная радиация
Изменения солнечной радиации в атмосфере и на земной поверхности
Явления, связанные с рассеянием радиации
Суммарная радиация, отражение солнечной радиации, поглощенная радиация, ФАР, альбедо Земли
Излучение земной поверхности
Встречное излучение или противоизлучение
Радиационный баланс земной поверхности
Географическое распределение радиационного баланса
Атмосферное давление и барическое поле
Барические системы
Колебания давления
Ускорение воздуха под действием барического градиента
Отклоняющая сила вращения Земли
Геострофический и градиентный ветер
Барический закон ветра
Фронты в атмосфере
Тепловой режим атмосферы
Тепловой баланс земной поверхности
Суточный и годовой ход температуры на поверхности почвы
Температуры воздушных масс
Годовая амплитуда температуры воздуха
Континентальность климата
Облачность и осадки
Испарение и насыщение
Влажность
Географическое распределение влажности воздуха
Конденсация в атмосфере
Облака
Международная классификация облаков
Облачность, ее суточный и годовой ход
Осадки, выпадающие из облаков (классификация осадков)
Характеристика режима осадков
Годовой ход осадков
Климатическое значение снежного покрова
Химия атмосферы
Химический состав атмосферы Земли
Химический состав облаков

Страница 1

Строительство и эксплуатация морских и речных портов осуществляется в условиях постоянного воздействия ряда внешних факторов, присущих основным природным средам: атмосфере, воде и суше. Соответственно этому внешние факторы подразделяют на 3 основные группы:

1)метеорологические;

2)гидрологические и литодинамические;

3)геологические и геоморфологические.

Метеорологические факторы:

Ветровой режим. Ветровая характеристика района строительства является основным фактором, определяющим местоположение порта по отношению к городу, районирование и зонирование его территории, взаимное расположение причалов различного технологического назначения. Являясь главным волнообразующим фактором режимные характеристики ветра определяют конфигурацию берегового причального фронта, компоновку акватории порта и внешних оградительных сооружений, трассирование водных подходов к порту.

Как метеорологическое явление ветер характеризуется направлением, скоростью, пространственным распределением (разгоном) и продолжительностью действия.

Направление ветра для целей портостроения и судоходства обычно рассматривают по 8-ми основным румбам.

Скорость ветра измеряется на высоте 10 м над поверхностью воды или суши с осреднением за 10 минут и выражается в метрах в секунду или узлах (knots, 1 узел=1 миля/час=0.514 метров/секунду).

В случае невозможности выполнения указанных требований результаты наблюдений над ветром могут быть откорректированы путем введения соответствующий поправок.

Под разгоном понимают расстояние, в пределах которого направление ветра изменялось не более чем на 300 .

Продолжительность действия ветра - период времени, в течение которого направление и скорость ветра находились в пределах определенного интервала.

Основными вероятностными (режимными) характеристиками ветрового потока, используемыми при проектировании морских и речных портов являются:

· повторяемость направлений и градаций скоростей ветра;

· обеспеченность скоростей ветра определенных направлений;

· расчетные скорости ветра, соответствующие заданным периодам повторяемости.

Температура воды и воздуха. При проектировании, строительстве и эксплуатации портов используют сведения о температуре воздуха и воды в пределах их изменения, а также вероятности экстремальных значений. В соответствии с данными о температуре определяются сроки замерзания и вскрытия бассейнов, устанавливается длительность и рабочий период навигации, планируется работа порта и флота. Статистическая обработка многолетних данных о температуре воды и воздуха предусматривает следующие этапы:

Влажность воздуха. Влажность воздуха определяется содержанием в нем водяных паров. Абсолютная влажность - количество водяного пара в воздухе, относительная - отношение абсолютной влажности к ее предельному значению при данной температуре.

Водяной пар поступает в атмосферу в процессе испарения с земной поверхности. В атмосфере водяной пар переносится упорядоченными воздушными течениями и путем турбулентного перемешивания. Под влиянием охлаждения водяной пар в атмосфере конденсируется – образуются облака, а затем и осадки, выпадающие на землю.

С поверхности океанов (361 млн. км2) в течение года испаряется слой воды толщиной 1423 мм (или 5,14х1014 т), с поверхности материков (149 млн. км2) – 423 мм (или 0,63х1014 т). Количество осадков на материках значительно превышает испарение. Это означает, что значительная масса водяного пара поступает на материки с океанов и морей. С другой стороны, не испарившаяся на материках вода поступает в реки и далее моря и океаны.

Сведения о влажности воздуха учитывают планировании перегрузки и хранения некоторых видов грузов (напр. чай, табак).

Туманы. Возникновение тумана обусловлено превращением паров в мельчайшие водяные капельки при увеличении влажности воздуха. Образование капелек происходит в случае наличия в воздухе мельчайших частиц (пыль, частицы соли, продукты сгорания и т.п.).

Проект СТО с конструктивной разработкой установки для мойки автомобиля снизу
Любой автолюбитель старается следить за чистотой и внешним видом своего автомобиля. В городе Владивостоке с влажным климатом и плохими дорогами следить за автомобилем сложно. Поэтому автовладельцам приходится прибегать к помощи специализированных автомоечных станций. Много машин в горо...

Разработка технологического процесса текущего ремонта жидкостного насоса автомобиля ВАЗ-2109
Автомобильный транспорт развивается качественно и количественно бурными темпами. В настоящее время ежегодный прирост мирового парка автомобилей равен 30-32 млн. единиц, а его численность - более 400 млн. единиц. Каждые четыре из пяти автомобилей общего мирового парка -легковые и на их до...

Бульдозер ДЗ-109
Целью данной работы является приобретение и закрепление знаний конструкции специфических узлов, главным образом электрооборудования машин для земляных работ. Сейчас разрабатывают бульдозеры для работ на более твердых грунтах. Разрабатывают бульдозеры с повышенной единичной мощностью м...

Медицинская климатология - это наука о влиянии природных факторов внешней среды на организм человека.

Задачи медицинской климатологии:

1. Изучение физиологических механизмов влияния климато-погодных факторов на организм человека

2. Медицинская оценка погод.

3. Разработка показаний и противопоказаний к назначению различных видов климатических методов лечения.

4. Научная разработка методик дозирования климатотерапевтических процедур.

5. Профилактика метеопатических реакций.

Классификация климатологических факторов

Выделяют три основные группы природных факторов внешней среды, воздействующих на человека:

1. Атмосферные или метеорологические.

2. Космические или радиационные.

3. Теллурические или земные.

Для медицинской климатологии в основном представляют интерес нижние слои атмосферы - тропосфера, где наиболее интенсивно происходит теплообмен и влагообмен между атмосферой и земной поверхностью, образование облаков и осадков. Этот слой атмосферы имеет высоту 10-12 км в средних широтах, 16-18 км в тропиках и 8-10 км в полярных широтах.

Характеристика метеорологических факторов

Метеорологические факторы делят на химические и физические . Химические факторы атмосферы - газы и различные примеси. К газам, содержание которых в атмосфере постоянно, относятся азот (78,08 об %), кислород (20,95), аргон (0,93), водород, неон, гелий, криптон, ксенон. Содержание других газов в атмосфере подвержено значительным изменениям. Это относится, прежде всего, к углекислому газу, содержание которого колеблется от 0,03 до 0,05 %, а вблизи некоторых промышленных предприятий и углекислых минеральных источников может повышаться до 0,07-0,16 %.

Образование озона связано с грозовыми явлениями и процессами окисления некоторых органических веществ, поэтому его содержание у поверхности Земли ничтожно и весьма непостоянно. В основном озон образуется на высоте 20-25 км под влиянием УФ-лучей Солнца и, задерживая коротковолновую часть УФ-спектра - УФС (с длиной волны короче 280 нм), предохраняет живые существа от гибели, т.е. играет роль гигантского фильтра, защищающего жизнь на Земле. В атмосферном воздухе могут содержаться в незначительных количествах и другие газы - аммиак, хлор, сероводород, различные соединения азота и др., являющиеся в основном результатом загрязнения воздуха отходами промышленных предприятий. Некоторые газы поступают в атмосферу из почвы. К ним относят радиоактивные элементы и газообразные продукты обмена почвенных бактерий. В воздухе могут содержаться ароматические вещества и фитонциды, выделяемые растениями. Наконец, в воздухе имеются взвешенные жидкие и твердые частицы - морские соли, органические вещества (бактерии, споры, пыльца растений и др.), минеральные частицы вулканического и космического происхождения, дым и др. Содержание этих веществ в воздухе зависит от многих факторов (например, от скорости ветра, времени года и т.д.).

Химические вещества, содержащиеся в воздухе, могут активно воздействовать на организм. Так, насыщение воздуха морскими солями превращает береговую приморскую зону в своеобразный естественный солевой ингаляторий, оказывающий благоприятное влияние при заболеваниях верхних дыхательных путей и легких. Воздух сосновых лесов с высоким содержанием терпенов может быть неблагоприятным для больных с сердечно-сосудистыми заболеваниями. Наблюдаются отрицательные реакции от повышения содержания в воздухе озона.

Из всех химических факторов абсолютное значение для жизни имеет кислород. При подъеме в горы снижается парциальное давление кислорода в воздухе, что приводит к явлениям кислородной недостаточности и развитию различного рода компенсаторных реакций (увеличение объема дыхания и кровообращения, содержания эритроцитов и гемоглобина и др.).

Колебания парциального давления кислорода, которые в одном и том же районе являются следствием колебаний атмосферного давления, весьма незначительны и не могут играть существенную роль в возникновении погодных реакций. На организм человека оказывают влияние содержание кислорода а воздухе, которое зависит от атмосферного давления, температуры и влажности воздуха. Чем меньше давление, чем выше температура и влажность воздуха, тем меньше в нем содержится кислорода. Колебания количества кислорода более отчетливо выражены в континентальном и холодном климате.

К физическим метеорологическим факторам относятся температура воздуха, атмосферное давление, влажность воздуха, облачность, осадки, ветер.

Температура воздуха определяется преимущественно солнечной радиацией, в связи с чем отмечаются периодические (суточные и сезонные) температурные колебания. Могут быть внезапные (непериодические) изменения температуры, связанные с общими процессами циркуляции атмосферы. Для характеристики термического режима в климатологии пользуются величинами средних суточных, месячных и годовых температур, а также максимальных и минимальных значений. Для определения температурных изменений служит величина, называемая межсуточной изменчивостью температуры (разность между средними суточными температурами двух соседних дней, а на практике - разность значений двух последовательных утренних измерений). Слабым похолоданием или потеплением считается изменение среднесуточной температуры на 1-2єС, умеренным похолоданием или потеплением - на 3-4єС, резким - более 4єС.

Нагревание воздуха происходит путем передачи ему тепла с земной поверхности, поглощающей солнечные лучи. Это происходит главным образом при помощи конвекции, т.е. вертикального перемещения нагретого от контакта с подстилающей поверхностью воздуха, на место которого опускается более холодный воздух из верхних слоев. Таким путем нагревается слой воздуха толщиной 1 км. Выше - теплообмен в тропосфере; это определяется турбулентностью планетарного масштаба, т.е. перемешиванием воздушных масс; происходит перемещение теплого воздуха из низких широт в высокие перед циклоном и вторжение холодных воздушных масс из высоких широт в тылу циклонов. Распределение температуры по высоте определяется характером конвекции. При отсутствии конденсации водяных паров температура воздуха понижается на 1єС с повышением на каждые 100 м, а при конденсации водяных паров - только на 0,4єС. В результате по мере удаления от Земли температура снижается в среднем на 0,65єС на каждые 100 м высоты (вертикальный градиент температуры).

Температура воздуха данной местности зависит от ряда физико-географических условий. Наличие обширных водных пространств в прибрежных районах уменьшает суточные и годовые колебания температуры.

В горных местностях, помимо высоты над уровнем моря, имеет значение расположение горных хребтов и долин, доступность местности ветрам и т.д. Играет роль и характер ландшафта. Поверхность, покрытая растительностью, нагревается днем и охлаждается ночью меньше, чем открытая.

Температура является одной из важных характеристик погоды, сезона. По классификации Е.Е. Федорова - Л.А. Чубукова на основе температурного фактора выделяют три большие группы погод: безморозные, с переходом температуры через 0єС и морозные погоды.

Неблагоприятное влияние на человека могут оказывать экстремальные (максимальные и минимальные) температуры, способствующие развитию ряда патологических состояний (обморожение, простуда, перегрев и т.д.), а также резкие колебания. Классическим примером этого является случай, когда в одну из январских ночей 1780 г. В Петербурге в результате повышения температуры с - 43,6єС до + 6єС заболело гриппом 40 тыс. человек.

Атмосферное давление измеряется в миллибарах (Мб) или миллиметрах ртутного столба (мм рт. ст.). В средних широтах на уровне моря давление воздуха составляет 760 мм рт. ст. По мере подъема давление снижается на 1 мм рт. ст. на каждые 11 м высоты. Давление воздуха характеризуется сильными непериодическими колебаниями, которые связаны с изменениями погоды; при этом колебания давления достигают 10-20 мб. Слабым изменением давления считается понижение или повышение его среднесуточной величины на 1-4 мб, умеренным - на 5-8 мб, резким - более 8 мб.

Влажность воздуха в климатологии характеризуется двумя величинами - упругостью пара (в мб) и относительной влажностью , т.е. процентным отношением упругости (парциального давления) водяного пара в атмосфере к упругости насыщающего водяного пара при той же температуре.

Иногда упругость водяного пара называют абсолютной влажностью, которая на самом деле представляет собой плотность водяного пара в воздухе и, выраженная в г/м 3 , численно близка к упругости пара в мм рт. ст.

Разность между насыщающей и фактической упругостью водяного пара при данных температуре и давлении называют дефицитом влажности или недостатком насыщения .

Кроме того, выделяют физиологическое насыщение , т.е. упругость водяных паров при температуре человеческого тела 37єС, равное 47,1 мм рт. ст.

Физиологический дефицит насыщения - разница между упругостью водяных паров при температуре 37єС и упругостью водяного пара в наружном воздухе. Летом упругость пара значительно выше, а дефицит насыщения меньше, чем зимой.

В метеосводках обычно указывается относительная влажность, т.к. ее изменение может непосредственно ощущаться человеком. Воздух считается сухим при влажности до 55%, умеренно сухим - при 56-70%, влажным - при 71-85%, очень влажным (сырым) - выше 85%. Относительная влажность измеряется в противоположном по отношению к сезонным и суточным колебаниям температуры направлении.

Влажность воздуха в сочетании с температурой оказывает выраженное влияние на организм. Наиболее благоприятны для человека условия, при которых относительная влажность равна 50%, а температура - 16-18єС. При повышении влажности воздуха, препятствующей испарению, тяжело переносится жара и усиливается действие холода, способствуя большей потере тепла путем проведения. Холод и жара в сухом климате переносятся легче, чем во влажном.

При понижении температуры содержащаяся в воздухе влага конденсируется, и образуется туман. Это возможно также при смешении теплого влажного воздуха с холодным и влажным. В промышленных районах туман может поглощать токсические газы, которые, вступая в химическую реакцию с водой, образуют, сернистые вещества. Это может привести к массовым отравлениям населения. В районах эпидемий капельки тумана могут содержать возбудителей заболеваний. При влажности опасность воздушной инфекции выше, т.к. капельки влаги обладают большей способностью к диффузии, чем сухая пыль, и поэтому могут попадать в самые отдаленные участки легкого.

Облака , образующиеся над земной поверхностью путем конденсации содержащихся в воздухе водяных паров, могут состоять из водяных капелек или кристаллов льда. Облачность измеряют по одиннадцатибалльной системе, согласно которой 0 соответствует полному отсутствию облаков, а 10 баллов - сплошной облачности. Погода считается ясной и малооблачной при 0-5 баллах нижней облачности, облачной - при 6-8 баллах и пасмурной - при 9-10 баллах.

Характер облаков на разной высоте различен. Облака верхнего яруса (с основанием свыше 6 км) состоят из ледяных кристаллов; они легкие, прозрачные, белоснежные, почти не задерживают прямых солнечных лучей и в то же время, диффузно отражая их, заметно увеличивают приток радиации от небесного свода (рассеянная радиация). Облака среднего яруса (2-6 км) состоят из переохлажденных капель воды или из смеси ледяных кристаллов и снежинок, более плотны, имеют сероватый оттенок, солнце сквозь них просвечивает слабо или вообще не просвечивает. Облака нижнего яруса имеют вид низких серых тяжелых гряд, валов или пелены, закрывающей небо сплошным покровом, солнце обычно сквозь них не просвечивает. Суточные изменения облачности не имеют строго закономерного характера, а годовой ход во многом зависит от общих физико-географических условий и особенностей ландшафта. Облачность оказывает влияние на световой режим и является причиной выпадения атмосферных осадков, которые резко нарушают суточную температуру и влажность воздуха. Именно эти два фактора, если они резко выражены, и могут оказывать неблагоприятное влияние на организм при облачной погоде.

Осадки могут быть жидкими (дождь) или твердыми (снег, крупа, град). Характер осадков зависит от условий их образования. Если восходящие воздушные потоки при большой абсолютной влажности достигают больших высот, для которых характерны низкие температуры, то водяные пары застывают и выпадают в виде крупы, града, а растаявшие - в виде ливневого дождя. На распределение осадков влияют физико-географические особенности местности. На континенте количество осадков обычно меньше, чем на побережье. На склонах гор, обращенных к морю, их обычно больше, чем на противоположных. Дождь играет положительную санитарную роль: он очищает воздух, смывает пыль; капли, содержащие микробы, опускаются на землю. В то же время дождь, особенно затяжной, ухудшает условия климатотерапии.

Снежный покров ввиду высокой отражательной способности (альбедо) к коротковолновому излучению существенно ослабляет процессы аккумуляции солнечного тепла, усиливая зимние морозы. Особенно высоко альбедо снега к УФ-излучению (до 97%), что повышает эффективность зимней гелиотерапии, особенно в горах. Нередко кратковременный дождь и снег улучшают состояние метеолабильных людей, способствуя исчезновению имевшихся до этого жалоб, связанных с погодой. Если за сутки суммарное количество осадков не превышает 1 мм, погода считается без осадков.

Ветер характеризуется направлением и скоростью. Направление ветра определяется той стороной света, откуда он дует (север, юг, запад, восток). Кроме этих основных направлений, выделяются промежуточные, составляющие, в сумме 16 румбов (северо-восточное, северо-западное, юго-восточное и т.д.). Сила ветра определяется по тринадцатибальной шкале Симпсона-Бофорта, по которой:

0 соответствует штилю (скорость по анемометру 0-0,5 м/с),

1 - тихий ветер,

2 - легкий ветер,

3 - слабый ветер,

4 - умеренный ветер,

5-6 - свежий ветер,

7-8 - сильный ветер,

9-11 - шторм,

12 - ураган (более 29 м/с).

Резкое кратковременное усиление ветра до 20 м/с и выше называется шквалом.

Причиной ветра является разница в давлении: воздух перемещается из области с высоким давлением в места с низким давлением. Чем больше разница в давлении, тем сильнее ветер. Неоднородность давления в горизонтальных направлениях обусловлена неоднородностью теплового режима на поверхности Земли. Летом суша нагревается сильнее, чем водная поверхность, вследствие чего воздух над сушей от нагревания расширяется, поднимается вверх, и растекается в горизонтальных направлениях. Это приводит к уменьшению общей массы воздуха и, следовательно, к понижению давления у поверхности Земли. Поэтому летом сравнительно прохладный и влажный морской воздух в нижних слоях тропосферы устремляется с моря на сушу, а зимой, наоборот, сухой холодный воздух движется с суши на море. Такие сезонные ветры (муссоны ) наиболее выражены в Азии, на границе крупнейшего материка и океана. Они же наблюдаются на Дальнем Востоке. Такая же смена ветров отмечается в прибрежных районах в течение суток - это бризы , т.е. ветры, дующие днем с моря на сушу, а ночью - с суши на море, распространяющиеся на 10-15 км по обе стороны береговой линии. На южных приморских курортах летом в дневное время они уменьшают ощущение жары. В горных местностях возникают горно-долинные ветры, дующие днем вверх по склонам (долинам), а ночью - вниз, с гор. Для горных местностей характерен своеобразный теплый сухой ветер, дующий с гор, - фён. Он образуется в том случае, если на пути воздушного течения располагаются горы с большой разницей в давлении между двумя сторонами горного хребта. Подъем воздуха приводит к небольшому понижению температуры, а опускание - к значительному ее повышению. В результате холодный воздух, опускаясь с гор, нагревается и теряет влагу, поэтому температура воздуха при фёне может за небольшой (15-30 минут) промежуток времени повыситься на 10-15єС и более. В случае перемещения воздуха в горизонтальном направлении из жарких и очень сухих местностей возникают суховеи, при которых влажность может падать до 10-15%.

При низких температурах ветер усиливает теплоотдачу, что может привести к переохлаждению организма. Чем ниже температура воздуха, тем тяжелее переносится ветер. В жаркое время ветер усиливает кожное испарение и улучшает самочувствие. Сильный ветер оказывает неблагоприятное влияние, утомляет, раздражает нервную систему, затрудняет дыхание, небольшой ветер оказывает тонизирующее и стимулирующее дествие.

Электрическое состояние атмосферы определяется напряженностью электрического поля, электропроводностью воздуха, ионизацией, электрическими разрядами в атмосфере. Земля имеет свойства отрицательно заряженного проводника, а атмосфера - положительно заряженного. Разность потенциалов Земли и точки, находящейся на высоте 1 м (градиент электрического потенциала), составляет 130 В. Электропроводность воздуха обусловлена количеством содержащихся в нем положительно и отрицательно заряженных атмосферных ионов (аэроионов). Аэроионы образуются путем ионизации молекул воздуха вследствие отрыва от них электронов под влиянием космических лучей, радиоактивного излучения почвы и других ионизирующих факторов. Освобожденные электроны тотчас присоединяются к другим молекулам. Так образуются положительно и отрицательно заряженные молекулы (аэроионы), имеющие большую подвижность. Малые (легкие) ионы, оседая на взвешенных частицах воздуха, образуют средние, тяжелые и ультратяжелые ионы. Во влажном и загрязненном воздухе резко возрастает число тяжелых ионов. Чем чище воздух, тем больше в нем легких и средних ионов. Максимальная концентрация легких ионов приходится на ранние утренние часы. Средняя концентрация положительных и отрицательных ионов колеблется от 100 до 1000 в 1 см 3 воздуха, достигая в горах нескольких тысяч в 1 см 3 . Отношение положительных ионов к отрицательным составляет коэффициент униполярности . Вблизи горных рек, водопадов, где происходит разбрызгивание воды, концентрация отрицательных ионов резко возрастает. Коэффициент униполярности в прибрежных зонах меньше, чем в удаленных от моря местностях: в Сочи - 0,95; в Ялте - 1,03; в Москве - 1,12; в Алма-Ате - 1,17. Отрицательные ионы оказывают благоприятное влияние на организм. Отрицательная ионизация является одним из лечебных факторов при каскадных купаниях.

Метеорологические условия оказывают существенное влияние на перенос и рассеивание вредных примесей, поступающих в атмосферу. Современные города обычно занимают территории в десятки, а иногда сотни квадратных километров, поэтому изменение содержания вредных веществ в их атмосфере происходит под действием мезо- и макромасштабных атмосферных процессов. Наибольшее влияние на рассеивание примесей в атмосфере оказывает режим ветра и температуры, в особенности ее стратификация.

Влияние метеорологических условий на перенос веществ в воздухе проявляется по-разному, в зависимости от типа источника выбросов. Если исходящие от источника газы перегреты относительно окружающего воздуха, то они обладают начальным подъемом; в связи с этим вблизи источника выбросов создается поле вертикальных скоростей, способствующих подъему факела и уносу примесей вверх. При слабых ветрах этот подъем обусловливает уменьшение концентраций примесей у земли. Концентрация примесей у земли бывает и при очень сильных ветрах, однако в этом случае оно происходит за счет быстрого переноса примесей. В результате наибольшие концентрации примесей в приземном слое формируются при некоторой скорости, которую называют опасная. Значение ее зависит от типа источника выбросов и определяется по формуле

где - объем выбрасываемой газовоздушной смеси, - разность температур этой смеси и окружающего воздуха, - высота трубы.

При низких источниках выбросов повышенный уровень загрязнения воздуха отмечается при слабых ветрах (0-1 м/с) за счет скопления примесей в приземном слое.

Несомненно, важное значение для скопления примесей имеет и продолжительность ветра определенной скорости, особенно слабого.

Прямое влияние на характер загрязнения воздуха в городе оказывает направление ветра. Существенное увеличение концентрации примесей наблюдается тогда, когда преобладают ветры со стороны промышленных объектов.

К основным формам, определяющим рассеивание примесей, относится стратификация атмосферы, в том числе инверсия температуры, (т.е. повышение температуры воздуха с высотой). Если повышение температуры начинается непосредственно от поверхности земли, инверсию называют приземной, если же с некоторой высоты над поверхностью земли, то - приподнятой. Инверсии затрудняют вертикальный воздухообмен. Если слой приподнятой инверсии расположен на достаточно большой высоте от труб промышленных предприятий, то концентрация примесей будет существенно меньше. Слой инверсии, расположенный ниже уровня выбросов, препятствует переносу их к земной поверхности.

Инверсии температуры в нижней тропосфере определяются в основном двумя факторами: охлаждением земной поверхности вследствие радиационного излучения и адвекцией теплого воздуха на холодную подстилающую поверхность; часто они связаны с охлаждением приземного слоя за счет затрат тепла на испарение воды или таяние снега и льда. Формированию инверсий способствует также нисходящие движения в антициклонах и сток холодного воздуха в пониженные части рельефа.

В результате теоретических исследований установлено, что при высоких выбросах концентрация примесей в приземном слое растет за счет усиления турбулентного обмена, вызванного неустойчивой стратификацией. Максимум приземной концентрации нагретой и холодной примеси определяется соответственно по формулам:

где; и - количество вещества и объемов газов, выбрасываемых в атмосферу в атмосферу в единицу времени; - диаметр устья источника выбросов; , - безразмерные коэффициенты, учитывающие скорость оседания вредных веществ в атмосфере и условия выхода газовоздушной смеси из устья источника выбросов; - перегрев газов; - коэффициент, определяющий условия вертикального и горизонтального рассеивания вредных веществ и зависящий от температурной стратификации атмосферы. Коэффициент определяют при неблагоприятных метеорологических условиях рассеивания примесей, при интенсивном вертикальном турбулентном обмене в приземном слое воздуха, когда приземная концентрация примеси в воздухе от высокого источника достигает максимума. Таким образом, чтобы знать значение коэффициента для различных физико-географических районов необходимы сведения о пространственном распределении значений коэффициента турбулентного обмена в приземном слое атмосферы

В качестве характеристики устойчивости пограничного слоя атмосферы используется так называемая «высота слоя перемешивания», соответствующая примерно высоте пограничного слоя. В этом слое наблюдаются интенсивные вертикальные движения, вызванные радиационным нагреванием, а вертикальный градиент температуры приближается к сухоадиабатическому или превышает его. Высота слоя перемешивания может быть определена по данным аэрологического зондирования атмосферы и максимальной температуре воздуха у земли за сутки. Повышение концентрации примесей в атмосфере обычно наблюдается при уменьшении слоя перемешивания, особенно при его высоте менее 1,5 км. При высоте слоя перемешивания более 1,5 км практически не наблюдается повышение загрязнения воздуха.

При ослаблении ветра до штиля происходит накопление примесей, но в это время значительно увеличивается подъем перегретых выбросов в верхние слои атмосферы, где они рассеиваются. Однако, если при этих условиях наблюдается инверсия, то может образоваться «потолок», который будет препятствовать подъему выбросов. Тогда концентрация примесей у земли резко возрастает.

Связь между уровнем загрязнения воздуха и метеорологическими условиями очень сложная. Поэтому при исследовании причин формирования повышенного уровня загрязнения атмосферы более удобно использовать не отдельные метеорологические характеристики, а комплексные параметры, соответствующие определенной метеорологической ситуации, например, скорость ветра и показатель термической стратификации. Для состояния атмосферы в городах большую опасность представляет приземная инверсия температуры в сочетании со слабыми ветрами, т.е. ситуация застоя воздуха. Обычно она связана с крупномасштабными атмосферными процессами, чаще всего с антициклонами, при которых в пограничном слое атмосферы наблюдаются слабые ветры, формируются приземные радиационные инверсии температуры.

На формирование уровня загрязнения воздуха оказывают также влияние туманы, осадки и радиационный режим.

Туманы на содержание примесей в воздухе влияют сложным образом: капли тумана поглощают примесь, причем не только вблизи подстилающей поверхности, но и из вышележащих, наиболее загрязненных слоев воздуха. Вследствие этого концентрация примесей сильно возрастает в слое тумана и уменьшается над ним. При этом растворение сернистого газа в каплях тумана приводит к образованию более токсичной серной кислоты. Так как в тумане возрастает весовая концентрация сернистого газа, то при его окислении серной кислоты может образовываться в 1,5 раза больше.

Осадки очищают воздух от примесей. После длительных и интенсивных осадков высокие концентрации примесей наблюдается очень редко.

Солнечная радиация обусловливает фотохимические реакции в атмосфере и формирование различных вторичных продуктов, обладающих часто более токсичными свойствами, чем вещества, поступающие от источников выбросов. Так, в процессе фотохимических реакций в атмосфере происходит окисление сернистого газа с образованием сульфатных аэрозолей. В результате фотохимического эффекта в ясные солнечные дни в загрязненном воздухе формируется фотохимический смог.

Проведенный выше обзор позволил выявить наиболее важные метеорологические параметры, влияющие на уровень загрязнения воздуха.

Просмотров