О костях вообще (общая остеология) Химический состав кости и ее физические свойства. Строение и химический состав костей

Со школьных уроков по химии каждому известно, что человеческий организм содержит в себе практически все элементы из периодической таблицы Д. И. Менделеева. Процентное содержание некоторых весьма значительно, а другие присутствуют лишь в следовых количествах. Но каждый из химических элементов, находящихся в организме, выполняет свою важную роль. В человеческом теле минеральные вещества содержатся в органические представлены как углеводы, белки и прочие. Дефицит или избыток какого-либо из них приводит к нарушению нормальной жизнедеятельности.

В химический состав костей входит ряд элементов и их веществ, в больше степени это соли кальция и коллаген, а также другие, процентное содержание которых значительно меньше, но роль их не менее значима. Прочность и здоровье скелета зависит от сбалансированности состава, который, в свою очередь, определяется множеством факторов, начиная от здорового питания и заканчивая экологической обстановкой окружающей среды.

Соединения, формирующие скелет

и неорганического происхождения. Ровно половина массы - это вода, остальные 50% делят оссеин, жир и известковые, фосфорные соли кальция и магния, а также На минеральную часть приходится порядка 22%, а органическая, представленная белками, полисахаридами, лимонной кислотой и ферментами, заполняет примерно 28%. В костях содержится 99% кальция, который есть в человеческом теле. Схожий компонентный состав имеют зубы, ногти и волосы.

Превращения в различных средах

В анатомической лаборатории можно провести следующий анализ, чтобы подтвердить химический состав костей. Для определения органической части ткань подвергают действию раствора кислоты средней силы, например, соляной, концентрации порядка 15%. В образовавшейся среде происходит растворение солей кальция, а оссеиновый «скелет» остаётся нетронутым. Такая кость приобретает максимальное свойство эластичности, её в прямом смысле можно завязать в узел.

Неорганическую компоненту, входящую в химический состав костей человека, можно выделить путём выжигания органической части, она легко окисляется до углекислого газа и воды. Минеральный остов характеризуется прежней формой, но крайней хрупкостью. Малейшее механическое воздействие - и он просто рассыплется.

При попадании костей в почву бактерии перерабатывают органическое вещество, а минеральная часть полностью пропитывается кальцием и превращается в камень. В местах, где нет доступа влаги и микроорганизмов, ткани со временем подвергаются естественной мумификации.

Через микроскоп

Любой учебник по анатомии расскажет про химический состав и строение костей. На клеточном уровне ткань определяется как особый тип соединительной. В основе лежат окруженные пластинками, составленными из кристаллического вещества - минерала кальция - гидроксилаппатита (основного фосфата). Параллельно располагаются звёздоподобные пустоты, содержащие костные клетки и кровеносные сосуды. Благодаря своему уникальному микроскопическому строению такая ткань отличается удивительной легкостью.

Основные функции соединений разной природы

Нормальная работа опорно-двигательной системы зависит от того, каков химический состав костей, в достаточном ли количестве содержатся органические и минеральные вещества. Известковые и фосфорные соли кальция, которые составляют 95% неорганической части скелета, и некоторые другие минеральные соединения определяют свойство твёрдости и прочности кости. Благодаря им ткань устойчива к серьёзным нагрузкам.

Коллагеновая компонента и её нормальное содержание отвечают за такую функцию, как упругость, устойчивость к сжатию, растяжению, перегибу и прочим механическим воздействиям. Но только в согласованном «союзе» органика и минеральная составляющая обеспечивают костной ткани те уникальные свойства, которыми она обладает.

Состав костей в детском возрасте

Процентное соотношение веществ, говорящее о том, каков химический состав костей человека, может варьироваться у одного и того же представителя. В зависимости от возраста, образа жизни и других факторов влияния, количество тех или иных соединений может меняться. В частности, у детей только формируется и состоит в большей степени из органической компоненты - коллагена. Поэтому скелет ребёнка более гибкий и эластичный.

Для правильного формирования тканей ребёнка крайне важно потребление витаминов. В частности, такого, как Д 3 . Только в его присутствии химический состав костей в полной мере пополняется кальцием. Дефицит этого витамина может привести к развитию хронических заболеваний и излишней хрупкости скелета из-за того, что ткань вовремя не наполнилась солями Са 2+ .

Оглавление [Показать]

Со школьных уроков по химии каждому известно, что человеческий организм содержит в себе практически все элементы из периодической таблицы Д. И. Менделеева. Процентное содержание некоторых весьма значительно, а другие присутствуют лишь в следовых количествах. Но каждый из химических элементов, находящихся в организме, выполняет свою важную роль. В человеческом теле минеральные вещества содержатся в виде солей, органические представлены как углеводы, белки и прочие. Дефицит или избыток какого-либо из них приводит к нарушению нормальной жизнедеятельности.

В химический состав костей входит ряд элементов и их веществ, в больше степени это соли кальция и коллаген, а также другие, процентное содержание которых значительно меньше, но роль их не менее значима. Прочность и здоровье скелета зависит от сбалансированности состава, который, в свою очередь, определяется множеством факторов, начиная от здорового питания и заканчивая экологической обстановкой окружающей среды.

В химический состав костей входят вещества органического и неорганического происхождения. Ровно половина массы – это вода, остальные 50% делят оссеин, жир и известковые, фосфорные соли кальция и магния, а также хлористый натрий. На минеральную часть приходится порядка 22%, а органическая, представленная белками, полисахаридами, лимонной кислотой и ферментами, заполняет примерно 28%. В костях содержится 99% кальция, который есть в человеческом теле. Схожий компонентный состав имеют зубы, ногти и волосы.

В анатомической лаборатории можно провести следующий анализ, чтобы подтвердить химический состав костей. Для определения органической части ткань подвергают действию раствора кислоты средней силы, например, соляной, концентрации порядка 15%. В образовавшейся среде происходит растворение солей кальция, а оссеиновый «скелет» остаётся нетронутым. Такая кость приобретает максимальное свойство эластичности, её в прямом смысле можно завязать в узел.

Неорганическую компоненту, входящую в химический состав костей человека, можно выделить путём выжигания органической части, она легко окисляется до углекислого газа и воды. Минеральный остов характеризуется прежней формой, но крайней хрупкостью. Малейшее механическое воздействие — и он просто рассыплется.

При попадании костей в почву бактерии перерабатывают органическое вещество, а минеральная часть полностью пропитывается кальцием и превращается в камень. В местах, где нет доступа влаги и микроорганизмов, ткани со временем подвергаются естественной мумификации.

Любой учебник по анатомии расскажет про химический состав и строение костей. На клеточном уровне ткань определяется как особый тип соединительной. В основе лежат коллагеновые волокна, окруженные пластинками, составленными из кристаллического вещества – минерала кальция – гидроксилаппатита (основного фосфата). Параллельно располагаются звёздоподобные пустоты, содержащие костные клетки и кровеносные сосуды. Благодаря своему уникальному микроскопическому строению такая ткань отличается удивительной легкостью.

Нормальная работа опорно-двигательной системы зависит от того, каков химический состав костей, в достаточном ли количестве содержатся органические и минеральные вещества. Известковые и фосфорные соли кальция, которые составляют 95% неорганической части скелета, и некоторые другие минеральные соединения определяют свойство твёрдости и прочности кости. Благодаря им ткань устойчива к серьёзным нагрузкам.

Коллагеновая компонента и её нормальное содержание отвечают за такую функцию, как упругость, устойчивость к сжатию, растяжению, перегибу и прочим механическим воздействиям. Но только в согласованном «союзе» органика и минеральная составляющая обеспечивают костной ткани те уникальные свойства, которыми она обладает.

Процентное соотношение веществ, говорящее о том, каков химический состав костей человека, может варьироваться у одного и того же представителя. В зависимости от возраста, образа жизни и других факторов влияния, количество тех или иных соединений может меняться. В частности, у детей костная ткань только формируется и состоит в большей степени из органической компоненты — коллагена. Поэтому скелет ребёнка более гибкий и эластичный.

Для правильного формирования тканей ребёнка крайне важно потребление витаминов. В частности, такого, как Д3. Только в его присутствии химический состав костей в полной мере пополняется кальцием. Дефицит этого витамина может привести к развитию хронических заболеваний и излишней хрупкости скелета из-за того, что ткань вовремя не наполнилась солями Са2+.

Химический состав костей человека, прошедшего подростковый возраст, значительно отличается от детского. Теперь соотношение минеральной и оссеиновой частей примерно сравниваются. Исчезает особая гибкость костной ткани, зато прочность скелета за счёт неорганической составляющей увеличивается в разы. Физические свойства её сравнимы с железобетонной конструкцией или чугуном, а упругость даже больше, чем у древесины дуба.

В полном объёме обеспечить сбалансированный химический состав костей человека (таблица, приведённая ниже, содержит данные о нормальном процентном содержании всех веществ, составляющих скелет) можно благодаря правильному образу жизни, рациональному питанию и заботе о здоровье.

Химический состав костей человека нарушается к старости, что приводит к серьёзным последствиям. Люди преклонного возраста жалуются на проблемы с опорно-двигательной системой, у них чаще случаются переломы, которые заживают дольше, чем у ребенка или взрослого. Это следствие увеличения содержания неорганических солей в составе скелета, их количество доходит до 80%. Нехватка коллагена, следовательно, уменьшение такого свойства, как упругость, приводит к тому, что кости становятся крайне хрупкими. Восстановление баланса возможно с помощью специальных медицинских препаратов, но всё равно этот процесс невозможно остановить или повернуть вспять. Такова физиологическая особенность организма.

Для здоровья и нормальной работы скелета необходимо с детства следить за правильным наполнением костной ткани всеми химическими элементами и соединениями, только в этом случае представляется возможность вести полноценный и активный образ жизни.

Костная ткань имеет структуру с гениально воплощенной архитектурой, которая сочетает взаимоисключающие характеристики: плотность и упругость, легкость и способность выдерживать серьезные нагрузки.

Из чего состоит кость? Из клеточных элементов, органического матрикса и минеральных веществ.

Органический матрикс, или остеоид, на 90% состоит из коллагена. Фибриллы коллагена формируют пластины, которые расположены либо параллельно друг другу, либо концентрически вокруг кровеносных сосудов, об­разуя при этом каналы, соединенные более мелкими канальцами. На фоне эндокринных, хронических воспалительных за­болеваний, в первую очередь рев­матических, геометрия костной ткани нарушается.

Минеральная часть кости представлена преимущественно кальцием и фосфатом, микроэле­ментами (магнием, марганцем, цинком, селеном и бором). Для нормальной минерализации кости необходимо поддержание опреде­ленных концентраций микроэлементов.

Формирование костной ткани в детстве и сохранение баланса между процессами образования и резорбции (рассасывании) кости в течение всей жизни происходят в организме под контролем различных внешних и внутренних факторов, зависят от пола, возраста, на­следственности, характера пита­ния, физических нагрузок, состо­яния здоровья и многого другого.

Ремоделирование кости (обра­зование и резорбция) - процесс, при котором неорганические вещества (минералы) отклады­ваются в органический матрикс. Кость формируют клетки - ос­теобласты, которые синтезиру­ют и секретируют органический матрикс и снабжены большим количеством рецепторов гормонов, витамина D, простагландинов и других биологических субстанций, необходимых для ее питания и работы.

Сразу после образования матрикса начинается его минерали­зация, которая заканчивается через несколько недель. В процес­се минерализации остеобласты превращаются в остеоциты - пол­ностью интегрированные в кость и имеющие очень низкую метабо­лическую активность клетки (т.е. с очень медленным, по сравнению с другими клетками, обменом веществ). Ре­зорбцию кости осуществляют ос­теокласты, ак­тивно синтезируя и секретируя во внеклеточное пространство ферменты, осуществляющие растворение и переработку отслуживших клеток. Регуляция ремоделирования кости происходит при участии нейроэндокринной системы. Прямое влияние на активность остеобластов и остеокластов ока­зывают гормоны щитовидной, па- ращитовидной, поджелудочной и половых желез, надпочечников и других эндокринных органов. В последние годы большое вни­мание уделяется изучению роли иммунной системы в регуляции ремоделирования.

Остеопороз - системное заболе­вание скелета, которое характеризуется уменьшением костной массы и нарушением костной ткани на молекулярном уровне, что приводит к снижению проч­ности кости и, следовательно, к повышению риска переломов.

Заболевание встреча­ется во всех возрастных группах, диагностируется как у женщин, так и у мужчин, может протекать бессимптомно, и часто первым его признаком является перелом. Именно переломы, связанные с остеопорозом , представляют огромную со­циальную и экономическую проб­лему, служат причиной низкого качества жизни, инвалидизации и преждевременной смерти. Установлено, что увеличение доли пожилых людей среди насе­ления разных стран мира при­ведет к повышению частоты остеопороза и его осложнений: к 2050 г. в Ев­ропе прогнозируется увеличение частоты переломов бедра на 46% по сравнению с 1990 г. Все­мирная организация здравоох­ранения (ВОЗ) официально оп­ределила остеопороз как одно из десяти важнейших хронических забо­леваний человечества. При этом специалисты подчеркивают, что остеопороз можно предупредить и изле­чить. На сегодняшний день опре­делены факторы риска и механиз­мы патогенеза остеопороза , разработаны методы его первичной и вторич­ной профилактики, совершенст­вуются способы лечения с ис­пользованием различных групп лекарственных средств, в том числе генно-инженерных биоло­гических препаратов.

По мнению большинства герон­тологов, старческий остеопороз начина­ется в детстве. Нарушается ремоделиро­вание кости, возникают коли­чественные и качественные изме­нения костной ткани, переломы, которые могут стать причиной ранней инвалидизации и даже смерти. По данным Т.А. Коротковой, которая изучала показатели и факторы, влияющие на минера­лизацию костной ткани в период роста у 412 подростков 15-18 лет, проживающих в Москве, более чем у половины обследованных подростков был выявлен дефицит витамина D, фофора и кальция. Оказалось, что только 6,3% мальчиков получали 1300 мг кальция в день с пищей, что со­ответствует рекомендованной возрастной норме, а из девочек ни одна не получала этот микро­элемент в должном количестве.

Следует отметить, что изучению роли кальция, фосфора и витами­на D в формировании минеральной плотности кости (МПК) у жен­щин и мужчин в разные возраст­ные периоды жизни посвящены многочисленные исследования. Вместе с тем внимание ученых привлекает проблема низкого содержания микроэлементов в организме при различных пато­логических состояниях, в том числе при остеопорозе , забо­леваниях костей и суставов.

Большинство микроэлементов входит в био­логически активные соединения или оказывает на них влияние. В составе ферментов, гормонов и иммунных комплексов микро­элементы участвуют в метабо­лических и иммунных процес­сах, определяя функциональное состояние различных органов и систем, в том числе костной и хрящевой ткани, их качество и структуру. Больные остеопорозом , как правило страда­ют одновременно двумя-тремя и более хроническими заболе­ваниями, которые оказывают негативное влияние на костную ткань. В группу болезней, на фоне которых развивается остеопороз , отнесены ревматоидный ар­трит, сахарный диабет, целиакия, хроническая почечная недоста­точность, хроническая обструктивная болезнь легких и брон­хиальная астма, заболевания щитовидной и паращитовидной желез, крови, печени и подже­лудочной железы. Прием противосудорожных препаратов, глюкокортикоидов и многих других лекарственных средств также способствует развитию остеопороза .

Ведущую роль в этом процессе играет уровень обеспечение ор­ганизма не только витаминами и белком, но и макро- и микро­элементами. Дефицит, обусловленный недостаточным потреблением с пищей или пониженным всасы­ванием этих веществ, может стать причиной снижения минеральной плотности кости. Особое значение придается таким микроэлементам, как медь, цинк, марганец и бору . Медь, марганец и цинк, которые входят в состав ферментов, ответствен­ных за синтез коллагена непосредственно участвуют в синтезе костного матрикса. Кроме того, цинк входит в состав более 300 фермен­тов, участвует в процессах син­теза и распада углеводов, белков, жиров, нуклеиновых кислот. Не­достаточное потребление цинка приводит к анемии, вторичному иммунодефициту, циррозу пече­ни, половой дисфункции, порокам развития плода. Цинк в комплексе с аминокислотой цистеином прин­ципиально важен для метаболизма генов. Инсулин, кортикотропин, соматотропин и гонадотропин явля­ются цинкзависимыми гормона­ми. Костная ткань содержит основной запас (около 30%) цинка всего организма. Концент­рация цинка в костной ткани быс­тро снижается при недостаточном поступлении цинка в организм или нарушении его усвоения. В связи с этим неудивительно, что дефекты развития костной системы человека обусловлены дефицитом цинка. В среднем человек потребля­ет от 7,5 до 17,0 мг цинка в сутки, при этом физиологическая пот­ребность в цинке у взрослых составляет 12 мг/сут, а у детей - от 3 до 12 мг/сут. Источниками цинка являются говядина, печень, морепродукты (устрицы, сельдь, моллюски), зерновая завязь, мор­ковь, горох, отруби, овсяная мука, орехи.

Медь входит в состав фермен­тов, обладающих окислительно- восстановительной активностью и участвующих в метаболизме железа, стимулирует усвоение белков и углеводов, задейство­вана в процессах обеспечения тканей организма человека кис­лородом. Кроме того, этот микро­элемент необходим для межмолекулярной связи колла­гена и эластина. Медь - основной компонент миелиновой оболочки, участвует в образовании коллаге­на, минерализации скелета, син­тезе эритроцитов, образовании пигментов кожи. Клиническими проявлениями недостатка меди в организме служат нарушения формирования и функции сердечно-сосудистой системы, ске­лета, развитие дисплазии соеди­нительной ткани. Дефицит меди влечет угнетение роста кости и ОП, что наблюдается при син­дроме Менкеса (врожденная не­способность усваивать медь). Суточная потребность в меди колеблется от 0,9 до 3,0 мг/сут. При этом физиологическая пот­ребность в меди у взрослых составляет 1,0 мг/сут, у детей - от 0,5 до 1,0 мг/сут.

Источниками меди являются шоколад, какао, печень, орехи, семечки, грибы, моллюски, лосось и шпинат.

Недостаточное поступление в ор­ганизм марганца сопровождается замедлением роста, нарушени­ями в репродуктивной системе, повышенной хрупкостью костной ткани, нарушениями углеводно­го и липидного обмена. Связано это с тем, что марганец прини­мает непосредственное участие в образовании костной и соеди­нительной ткани, входит в состав ферментов, включающихся в ме­таболизм аминокислот, углеводов, катехоламинов, необходим для синтеза холестерина и нуклеотидов.

Пищевыми источниками марганца являются зеленые лис­товые овощи, продукты из неочи­щенного зерна (пшеницы, риса), орехи и чай. Среднее потребление данного микроэлемента с про­дуктами питания колеблется от 1 до 10 мг/сут. Установленные уровни потребности варьируют от 2 до 5 мг/сут, а физиологичес­кая потребность у взрослых со­ставляет 2 мг/сут.

Роль бора в процессах остеогенеза определяется непосредственным влиянием данного микроэлемен­та на метаболизм витамина D, а также регуляцией активности паратиреоидного гормона, ко­торый, как известно, ответствен за обмен кальция, фосфора и маг­ния. Это позволяет полагать, что влияние бора на метаболизм костной ткани сопоставимо с та­ковым витамина D. Суточная потребность в боре составляет 2-3 мг/сут, он содержится в кор­невых овощах, винограде, грушах, яблоках, орехах и пиве.

Сведения об исследовании стату­са микроэлементов при патологии костной системы (остеопения, остеопороз) чрезвычайно ограни­ченны, так как, к сожалению, проводилось мало исследований, но накопленный материал позволяет сделать однозначные выводы.

Установлена прямая зависимость содержания мине­ралов в костях предплечья с ус­воением цинка у женщин в пост­менопаузе, что свидетельствует о влиянии этого микроэлемента на сохранение костной массы. Другие исследования пока­зали, что усвоение цинка сни­жается с возрастом, особенно у женщин, и взаимосвязано с потерей кост­ной массы в постменопаузе. Выявлено повышение выделения цинка с мочой у пациенток с остеопорозом по сравнению с женщинами со­ответствующего возраста без остеопороза , что может быть связано с повы­шенной резорбцией кости, которая ведет к высвобожде­нию цинка из костной ткани.

Устано­влено, что концентрация цинка в крови, а также его усвоение у пожилых паци­енток с остеопорозом статистически зна­чимо ниже, чем у моло­дых женщин. Уровень цинка в сыворотке крови у пациенток с постменопаузальным ОП ниже, чем у женщин без остеопороза .

Особый интерес представля­ет исследование вза­имосвязи между показателями статуса цинка в организме и биохимических маркеров ремоделирования кости у европейцев в возрасте 55-87 лет, проведен­ное в четырех научных центрах Франции, Италии и Северной Ирландии (ZENITH). Исследо­вание продолжалось 6 месяцев, в нем участвовали 387 здоровых мужчин и женщин. Всем пациен­там определяли концентрацию цинка в крови и моче, уровень маркеров формирования костной ткани и маркеров ре­зорбции кости. У большинства пациентов ремоделирование кости было в норме, признаки дисбаланса процессов форми­рования и резорбции кости от­сутствовали. После учета искажающих фак­торов (возраст, пол и исследова­тельский центр) были получены некото­рые данные о взаимосвязи между обменом цинка в организме и ремоделированием кости у здо­ровых взрослых людей.

Исследование турецких уче­ных было посвящено изуче­нию содержания магния, цинка и меди в сыворотке крови жен­щин с постменопаузальным остеопорозом , остеопенией и нормальной минеральной плотности кости шейки бедра. Было установ­лено, что концентрация магния и цинка у пациенток с остеопорозом зна­чимо ниже, чем у женщин с ос­теопенией и здоровых женщин, а у женщин с остеопенией - ста­тистически значимо ниже, чем у здоровых. Статистически зна­чимого различия между груп­пами по концентрации меди не выявлено. Авторы высказали мнение, что поступление микро­элементов, в особенности магния, цинка и, вероятно, меди, может оказать благоприятное воздейст­вие на плотность костной ткани. Однако ряд исследователей не об­наружили значимого различия в концентрации магния, цинка, селена и марганца в крови и эрит­роцитах женщин в постменопау­зе как с остеопорозом , так и без остеопороза .

Необходимо отметить, что во многих странах статус магния, меди, цинка, марганца, селена и бора у пациенток с остеопорозом в ли­тературе не описан. Некоторые исследователи сообщают о сни­жении уровня этих микроэлемен­тов у пациенток с остеопорозом , в то время как другие утверждают обрат­ное. Противоречивость данных об уровне магния, меди, цинка, марганца, селена и бора в плазме крови у пожилых людей объясня­ется тем, что в качестве показателя используется концентрация этих микроэлементов в плазме или сы­воротке крови. Однако данный показатель ненадежен, поскольку подвержен влиянию ряда факто­ров, не имеющих отношения к со­держанию веществ в организме. К числу таких факторов относит­ся прием лекарственных средств гормонозаместительной тера­пии, диуретиков, слабительных препаратов и др.).

В нашей стране интерес к ис­следованию связи между остеотропными микроэлементами, характеристикой костной ткани и возможностью использования препаратов, в состав которых входят указанные микроэлемен­ты, для профилактики и лечения остеопороза очевиден.

Так, отечествен­ными педиатрами изучен статус микроэлементов и показателей минеральной плотности кости различных отделов скеле­та у 100 подростков в возрасте 11-15 лет, госпитализированных по поводу вегетативной дистонии. У обследованных обна­ружены изменения в содержании бора, меди, марганца и цинка, а у 46 человек выявлена остеопения. Удалось установить взаимосвязь между содержани­ем микроэлементов в волосах и минеральной плотностью костей, проанализировать воз­можность ее оценки на ос­новании определения комплек­са указанных микроэлементов.

Таким образом, людям с болезнями костей и суставов необходимо понимать, что для развития остеопороза имеется много причин: сопутствующие заболевания, характер питания, потребление богатых микроэле­ментами продуктов, признаки дефицита кальция, витамина D, цинка, меди, марганца, селена и бора.

Популяризация знаний о необходимости профилактики и лечения остеопороза , вкладе кальция, витамина D и микроэлементов в здоровье кости позволит сни­зить частоту переломов, а следо­вательно, и социально-экономи­ческие затраты общества.

В Клинических рекомендациях, подготовленных Российской ас­социацией по остеопорозу, сформулированы положения по лечению и профилактике остеопороза , основанные на анализе большо­го количества источников с позиций доказательной медицины. Основной задачей профилактики остеопороза является улучшение качества жизни пациентов, предотвраще­ние риска переломов костей ске­лета. Профилактика остеопороза долж­на быть направлена на раннюю диагностику и рациональное лечение заболевания. В арсенале терапевтических средств име­ются необходимые современные антиостеопоротические препа­раты. Доказана эффективность различных агентов (препаратов каль­ция и витамина D в комбинации с остеотропными микроэлемен­тами и др.) при профилактике и лечении остеопороза , установлено их положительное действие на минеральную плотность кости.

По материалам «Эффективная фармакотерапия» №38 2013, Спецвыпуск №2 Остеопороз, Репринт И.С. Дадыкина, П.С. Дадыкина, О.Г. Алексеева «Вклад микроэлементов (меди, марганца, цинка, бора) в здоровье кости: вопросы профилактики и лечения остеопении и остеопороза»

Кость - твёрдый орган живого организма. Состоит из нескольких тканей, важнейшей из которых является костная. Кость выполняет опорно-механическую и защитную функции, является составной частью эндоскелета позвоночных, производит красные и белые кровяные клетки, сохраняет минералы. Костная ткань - одна из разновидностей плотной соединительной ткани.

Кости обладают большим разнообразием форм и размеров, зависящих от функции конкретной кости. Каждая обладает сложной структурой, благодаря чему они достаточно лёгкие, но при этом жёсткие и прочные. Кость может включать в свою структуру: костный мозг, эндост, надкостницу, нервы, кровеносные сосуды, хрящи.

Кости состоят из различных клеток костной ткани: остеобласты участвуют в создании и минерализации костей, остеоциты поддерживают структуру, а остеокласты обеспечивают резорбцию костной ткани. Минерализованная матрица костной ткани имеет органическую составляющую в основном из коллагена и неорганическую составляющую костной ткани из различных солей.

В человеческом теле, при рождении, более 270 костей, но многие из них срастаются в процессе роста, оставляя в общей сложности 206 отдельных костей во взрослом организме (не считая многочисленные мелкие сесамовидные кости). Бедренная кость - самая большая кость в теле человека, самая маленькая - стремя в среднем ухе.

В состав костей входят как органические, так и неорганические вещества; количество первых тем больше, чем моложе организм; в связи с этим кости молодых животных отличаются гибкостью и мягкостью, а кости взрослых - твёрдостью. Отношение между обеими составными частями представляет различие в разных группах позвоночных; так, в кости рыб, особенно глубоководных, содержание минеральных веществ относительно мало, и они отличаются мягким волокнистым строением.

У взрослого человека количество минеральных составных частей (главным образом, гидроксиапатита) составляет около 60-70 % веса кости, а органическое вещество (главным образом коллаген тип I) - 30-40 %. Кости имеют большую прочность и громадное сопротивление сжатию, чрезвычайно долго противостоят разрушению и принадлежат к числу самых распространённых остатков ископаемых животных. При прокаливании кость теряет органическое вещество, но сохраняет свою форму и строение; подвергая кость действию кислоты (например соляной), можно растворить минеральные вещества и получить гибкий органический (коллагеновый) остов кости.

При сжигании кость чернеет с выделением углерода, который остаётся после разложения органических веществ. При дальнейшем выгорании углерода получается белый твёрдый хрупкий остаток.

У пожилых людей в костях увеличивается доля минеральных веществ, из-за этого их кости становятся более хрупкими (остеопороз).

Микроскопическая структура кости

По микроскопическому строению костное вещество представляет особый вид соединительной ткани (в широком смысле слова), костную ткань, характерные признаки которой: твёрдое, пропитанное минеральными солями волокнистое межклеточное вещество и звездчатые, снабжённые многочисленными отростками, клетки.

Основу кости составляют коллагеновые волокна, окруженные кристаллами гидроксиапатита, которые слагаются в пластинки. Пластинки эти в костном веществе частью располагаются концентрическими слоями вокруг длинных разветвляющихся каналов (Гаверсовы каналы), частью лежат между этими системами, частью обхватывают целые группы их или тянутся вдоль поверхности кости. Гаверсов канал в сочетании с окружающими его концентрическими костными пластинками считается структурной единицей компактного вещества кости - остеоном. Параллельно поверхности этих пластинок в них расположены слои маленьких звездообразных пустот, продолжающихся в многочисленные тонкие канальцы - это так называемые «костные тельца», в которых находятся костные клетки, дающие отростки в канальцы. Канальцы костных телец соединяются между собой и с полостью Гаверсовых каналов, внутренними полостями и надкостницей, и таким образом вся костная ткань оказывается пронизанной непрерывной системой наполненных клетками и их отростками полостей и канальцев, по которым и проникают необходимые для жизни кости питательные вещества. По Гаверсовым каналам проходят тонкие кровеносные сосуды (обычно артерия и вена); стенка Гаверсова канала и наружная поверхность кровеносных сосудов одеты тонким слоем эндотелия, а промежутки между ними служат лимфатическими путями кости. Губчатое костное вещество не имеет Гаверсовых каналов.

Костная ткань рыб представляет некоторые отличия: Гаверсовых каналов здесь нет, а канальцы костных телец сильно развиты.

Остеобласты - молодые остеобразующие клетки костей (диаметр 15-20 мкм), которые синтезируют межклеточное вещество - матрикс. По мере накопления межклеточного вещества остеобласты замуровываются в нём и становятся остеоцитами. Родоначальником являются адвентициальные клетки.

Остеоциты - клетки костной ткани позвоночных животных и человека, значительно или полностью утратившие способность синтезировать органический компонент матрикса.

Они имеют отростчатую форму, округлое плотное ядро и слабобазофильную цитоплазму. Органоидов мало, клеточного центра нет - клетки утратили способность к делению. Они располагаются в костных полостях, или лакунах, повторяющих контуры остеоцита, и имеют длину 22-25 мкм, а ширину 6-14 мкм. Во все стороны от лакун отходят слегка ветвящиеся канальцы костных полостей, анастомозирующие (сообщающиеся) между собой и с периваскулярными пространствами сосудов, идущих внутри кости. В пространстве между отростками остеоцитов и стенками канальцев содержится тканевая жидкость, движению которой способствуют «пульсирующие» колебания остеоцитов и их отростков. Остеоциты - единственная живая и активно функционирующая клетка в зрелой костной ткани, их роль заключается в стабилизации органического и минерального состава кости, обмене веществ (в том числе в транспортировке ионов Са из кости в кровь и обратно). Костная ткань, не содержащая живых остеоцитов, быстро разрушается.

Клетки гематогенного происхождения, образующиеся из моноцитов. Может содержать от 2 до 50 ядер. Организация остеокласта адаптирована к разрушению кости. В сочетании с остеобластами, остеокласты контролируют количество костной ткани (остеобласты создают новую костную ткань, а остеокласты разрушают старую)

Принципиальная схема строения трубчатой кости

В скелете человека различают по форме длинные, короткие, плоские и смешанные кости, также есть кости пневматические и сесамовидные. Расположение костей в скелете связано с выполняемой ими функцией: «Кости построены так, что при наименьшей затрате материала обладают наибольшей крепостью, легкостью, по возможности уменьшая влияние толчков и сотрясений» (П. Ф. Лесгафт).

Длинные кости, ossa longa, имеют вытянутую, трубчатую среднюю часть, называемую диафизом , diaphysis, состоящую из компактного вещества. Внутри диафиза имеется костномозговая полость , cavitas medullaris, с жёлтым костным мозгом. На каждом конце длинной кости находится эпифиз , epiphysis, заполненный губчатым веществом с красным костным мозгом. Между диафизом и эпифизом располагается метафиз , metaphysis. В период роста кости здесь находится хрящ, который позже окостеневает. Длинные трубчатые кости составляют в основном скелет конечностей. Костные выступы на эпифизах, которые являются местом прикрепления мышц и связок, называются апофизами (apophysis).

Плоские кости , ossa plana, состоят из тонкого слоя губчатого вещества, покрытого снаружи компактным веществом. Они различны по происхождению: лопатка и тазовая кость развиваются из хряща, а плоские кости крыши черепа - из соединительной ткани.

Короткие кости , ossa brevia, состоят из губчатого вещества, покрытого снаружи тонким слоем компактного вещества. Одной большой костно-мозговой полости эти кости не имеют. Красный костный мозг располагается в мелких губчатых ячейках, разделённых костными балками. Короткие кости запястья и предплюсны способствуют большей подвижности кистей и стоп.

Смешанные кости , ossa irregularia, находятся в различных отделах скелета (позвоночник, череп). В них сочетаются элементы коротких и плоских костей (основная часть и чешуя затылочной кости, тело позвонка и его отростки, каменистая часть и чешуя височной кости). Такие особенности обусловлены различием происхождения и функции частей этих костей.

Пневматические кости , или воздухоносные, - кости, которые имеют внутри полость, выстланную слизистой оболочкой и заполненную воздухом, что облегчает вес кости, не уменьшая её прочности.

Сесамовидные кости - это кости, вставленные в сухожилия мышц и поэтому увеличивающие плечо силы мышц, способствующие усилению их действия.

Поверхность кости может иметь различные углубления (бороздки, ямки и т. д.) и возвышения (углы, края, ребра, гребни, бугорки и т. п.). Неровности служат для соединения костей между собой или для прикрепления мускулов и бывают тем сильнее развиты, чем более развита мускулатура. На поверхности находятся так называемые «питательные отверстия» (Foramina nutricia), через которые входят внутрь кости нервы и кровеносные сосуды.

В костях различают компактное и губчатое костное вещество. Первое отличается однородностью, твёрдостью и составляет наружный слой кости; оно особенно развито в средней части трубчатых костей и утончается к концам; в широких костях оно составляет 2 пластинки, разделённые слоем губчатого вещества; в коротких оно в виде тонкой плёнки одевает кость снаружи. Губчатое вещество состоит из пластинок, пересекающихся в различных направлениях, образуя систему полостей и отверстий, которые в середине длинных костей сливаются в большую полость.

Наружная поверхность кости одета так называемой надкостницей (Periosteum), оболочкой из соединительной ткани, содержащей кровеносные сосуды и особые клеточные элементы, служащие для питания, роста и восстановления кости.

Внутренние полости кости содержат мягкую, нежную, богатую клетками и снабжённую кровеносными сосудами массу, называемую костным мозгом (у птиц часть полостей наполнена воздухом). Различают три его вида: слизистый (желатинозный), красный (или часто - миелоидный), и жёлтый или жировой (наиболее распространённый). Основную форму составляет красный костный мозг, в нём наблюдается нежная соединительно-тканная основа, богатая сосудами, очень похожие на лейкоциты костномозговые или лимфатические клетки, клетки, окрашенные гемоглобином и считаемые за переход к красным кровяным тельцам, бесцветные клетки, содержащие внутри красные шарики, и многоядерные крупные («гигантские») клетки, так называемые миэлопласты.

Красный (деятельный) костный мозг - это миелоидная ткань , которая, как и лимфоидная, состоит из двух основных компонентов: стромального - строма, служащая микроокружением для гемопоэтических (кроветворных) клеток, и гемального - форменные элементы крови на разных стадиях развития.

Строма образована ретикулярной тканью, остеогенными, тучными, жировыми, адвентициальными, эндотелиальными клетками и межклеточным веществом.

Желтый (недеятельный) костный мозг - это жировая ткань с отдельными островками (стромами) ретикулярной ткани. Он находится в костномозговых каналах трубчатых костей и в частях ячеек губчатого вещества костей.

Слизистый костный мозг - студенистая, слизистая, бедная клетками консистенция. Он образуется в развивающихся костях черепа и лица.

При отложении в стромальный компонент основы жира и уменьшении числа миелоидных элементов красный мозг переходит в жёлтый, а при исчезновении жира и миелоидных элементов он приближается к слизистому.

Костный мозг не имеет ничего общего с головным и спинным мозгом. Он не относится к нервной системе и не имеет нейронов.

Костный мозг является важнейшим кроветворным органом.

Развитие кости происходит двумя способами:

  • из соединительной ткани;
  • на месте хряща.

Из соединительной ткани развиваются кости свода и боковых отделов черепа, нижняя челюсть и, по мнению некоторых, ключица (а у низших позвоночных и некоторые другие) - это так называемые покровные или облегающие кости. Они развиваются прямо из соединительной ткани; волокна её несколько сгущаются, между ними появляются костные клетки и в промежутках между последними отлагаются известковые соли; образуются сначала островки костной ткани, которые затем сливаются между собой. Большинство костей скелета развивается из хрящевой основы, имеющей такую же форму, как будущая кость. Хрящевая ткань подвергается процессу разрушения, всасывания и вместо неё образуется, при деятельном участии особого слоя образовательных клеток (остеобластов), костная ткань; процесс этот может идти как с поверхности хряща, от одевающей его оболочки, перихондрия, превращающегося затем в надкостницу, так и внутри его. Обыкновенно развитие костной ткани начинается в нескольких точках, в трубчатых костях отдельными точками окостенения обладают эпифизы и диафиз.

Рост кости в длину происходит главным образом в частях ещё не окостеневших (в трубчатых костях между эпифизами и диафизом), но отчасти и путём отложения новых частиц ткани между существующими («интуссусцепция»), что доказывают повторные измерения расстояний между вбитыми в кость остриями, питательными отверстиями и т. п.; утолщение костей происходит путём отложения на поверхности кости новых слоев («аппозиция»), благодаря деятельности остеобластов надкостницы. Эта последняя обладает в высокой степени способностью воспроизводить разрушенные и удалённые части кости. Деятельностью её обусловливается и срастание переломов. Параллельно с ростом кости идёт разрушение, всасывание (резорбция) некоторых участков костной ткани, причём деятельную роль играют так называемые остеокласты («клетки, разрушающие кость»).

Синдесмология - учение о соединениях костей.

  • Синартрозы - непрерывные соединения костей, более ранние по развитию, неподвижные или малоподвижные по функции.
    • Синдесмоз - кости соединены посредством соединительной ткани.
      • межкостные перепонки (между костями предплечья или голени)
      • связки (во всех суставах)
      • роднички
      • швы
        • зубчатые (большинство костей свода черепа)
        • чешуйчатые (между краями височной и теменной костей)
        • гладкие (между костями лицевого черепа)
    • Синхондроз - кости соединены посредством хрящевой ткани. по свойству хрящевой ткани:
      • гиалиновый (между рёбрами и грудиной)
      • волокнистые (между позвонками)

      по длительности своего существования различают синхондрозы:

      • временные
      • постоянные
    • Синостоз - кости соединены посредством костной ткани.
  • Диартрозы - прерывные соединения, более поздние по развитию и более подвижные по функции. классификации суставов:
    • по числу суставных поверхностей
    • по форме и по функции
  • Гемиартроз - переходная форма от непрерывных к прерывным или обратно.

Каждому необходимо знать скелет человека с названием костей. Это важно не только врачам, но и обычным людям, ведь информация о строении человека, его скелете и мышцах поможет его укреплять, чувствовать себя здоровым, а в какой-то момент могут выручить в экстренных ситуациях.

Скелет и мышцы вместе составляют локомоторную систему человека. Скелет человека - целый комплекс костей разных типов и хрящей, взаимосвязанных с помощью непрерывных соединений, синартрозов, симфизов. Кости по составу делят на:

  • трубчатые, формирующие верхние (плечо, предплечье) и нижние (бедро, голень) конечности;
  • губчатые, стопа (в частности, предплюсны) и кисть человека (запястья);
  • смешанные - позвонки, крестец;
  • плоские, сюда относят тазовые и черепные кости.

Важно! Костная ткань, несмотря на свою повышенную прочность, способна расти и восстанавливаться. В ней происходят метаболические процессы, а в красном костном мозге даже формируются клетки крови. С возрастом костная ткань перестраивается, становится способной адаптироваться к различным нагрузкам.

Виды костей

Сколько костей в теле человека?

Строение скелета человека претерпевает множество изменений на продолжении всей жизни. На начальном этапе развития плод состоит из хрупкой хрящевой ткани, которая со временем постепенно замещается на костную. Новорожденный ребёнок имеет более 270 мелких костей. С возрастом некоторые из них могут срастаться, к примеру, черепные и тазовые, а также некоторые позвонки.

Сказать сколько точно костей в теле у взрослого человека очень сложно. Иногда у людей встречаются дополнительные рёбра или кости в стопе. Могут быть наросты на пальцах, чуть меньшее или большее количество позвонков в любом из отделов позвоночника. Строение скелета человека сугубо индивидуально. В среднем у взрослого человека насчитывают от 200 до 208 костей .

Каждый отдел выполняет свои узкоспециализированные задачи, однако скелет человека в целом обладает несколькими общими функциями:

  1. Опорная. Осевой скелет является опорой для всех мягких тканей тела и системой рычагов для мышц.
  2. Двигательная. Подвижные сочленения между костями позволяют человеку совершать миллионы точных движений с помощью мышц, сухожилий, связок.
  3. Защитная. Осевой скелет защищает мозг и внутренние органы от травм, выступает в роли амортизатора при ударах.
  4. Метаболическая. В состав костной ткани входит большое количество фосфора, кальция и железа, участвующих в обмене минералами.
  5. Кроветворная. Красный мозг трубчатых костей является местом, где проходит гемопоэз - образование эритроцитов (красных кровяных телец) и лейкоцитов (клеток иммунной системы).

Если нарушены некоторые функции скелета, могут возникнуть заболевания разной степени тяжести.

Функции скелета человека

Отделы скелета

Скелет человека делят два больших отдела: осевой (центральный) и добавочный (или скелет конечностей). Каждый из отделов выполняет свои задачи. Осевой скелет защищает полостные органы от повреждений. Скелет верхней конечности соединяет руку с туловищем. За счёт повышенной подвижности костей руки, он помогает выполнять множество точных движений пальцами. Функции скелета нижних конечностей заключаются в связывании ноги с туловищем, передвижении тела, амортизации при ходьбе.

Осевой скелет. Этот отдел составляет основу организма. В него входят: скелет головы и туловища.

Скелет головы. Черепные кости плоские, неподвижно соединённые (за исключением подвижной нижней челюсти). Они защищают от сотрясений мозг и органы чувств (слуха, зрения и обоняния). Череп делится на лицевой (висцеральный), мозговой и отдел среднего уха.

Скелет туловища . Кости грудной клетки. По внешнему виду этот подотдел напоминает сжатый усечённый конус или пирамиду. Грудная клетка включает в себя парные рёбра (из 12 только 7 сочленены с грудиной), позвонки грудного отдела позвоночника и грудину - непарную грудную кость.

В зависимости от соединения рёбер с грудиной различают истинные (верхние 7 пар), ложные (следующие 3 пары), плавающие (последние 2 пары). Сама грудина считается центральной костью, входящей в осевой скелет.

В ней выделяют тело, верхнюю часть - рукоятку, и нижнюю часть - мечевидный отросток. Кости грудной клетки имеют соединение повышенной прочности с позвонками. На каждом позвонке есть специальная суставная ямка предназначенная для крепления к рёбрам. Такой способ сочленения необходим для выполнения основной функции скелета туловища - защиты органов жизнеобеспечения человека: сердца, лёгких, части пищеварительной системы.

Важно! Кости грудной клетки подвержены внешним влияниям, склонны к видоизменениям. Физическая активность и правильная посадка за столом способствуют правильному развитию грудной клетки. Малоподвижный образ жизни и сутулость приводят к зажатости органов грудной клетки и сколиозу. Неправильно развитый скелет грозит серьёзными проблемами со здоровьем.

Позвоночник. Отдел является центральной осью и основной опорой всего человеческого скелета. Позвоночный столб сформирован из 32-34 отдельных позвонков, защищающих спинномозговой канал с нервами. Первые 7 позвонков называются шейными, следующие 12 – грудными, затем идут поясничные (5), 5 сросшихся, образующих крестец, и 2-5 последних, составляющих копчик.

Позвоночник поддерживает спину и туловище, обеспечивает за счёт спинномозговых нервов двигательную активность всего организма и связь нижней части тела с головным мозгом. Позвонки соединены друг с другом полуподвижно (помимо крестцовых). Такое соединение осуществляется посредством межпозвоночных дисков. Эти хрящевые образования смягчают толчки и сотрясения при любом движении человека и обеспечивают гибкость позвоночника.

Скелет верхней конечности. Скелет верхней конечности представлен плечевым поясом и скелетом свободной конечности. Плечевой пояс обеспечивает соединение руки с корпусом и включает в себя две парные кости:

  1. Ключицу, которая обладает S-образным изгибом. Одним концом она крепится к грудине, а другим соединена с лопаткой.
  2. Лопатку. По внешнему виду представляет собой треугольник, прилегающий к туловищу сзади.

Скелет свободной конечности (руки) более подвижен, так как кости в нём соединяются крупными суставами (плечевым, лучезапястными локтевым). Скелет представлен тремя подотделами:

  1. Плечом, которое состоит из одной длинной трубчатой кости - плечевой. Одним из своих концов (эпифизов) она крепится к лопатке, а другим, переходящим в мыщелок, к предплечным костям.
  2. Предплечьем: (двумя костями) локтевая, расположенная на одной линии с мизинцем и лучевая – на линии с первым пальцем. Обе кости на нижних эпифизах образуют лучезапястное сочленение с запястными костями.
  3. Кистью, включающей в себя три части: кости запястья, пястья и пальцевые фаланги. Запястье представлено двумя рядами по четыре губчатые кости в каждом. Первый ряд (гороховидная, трёхгранная, полулунная, ладьевидная) служит для прикрепления к предплечью. Во втором ряду находятся крючковидная, трапеция, головчатая и трапецевидная кости, обращённые в сторону ладони. Пясть состоит из пяти трубчатых костей, своей проксимальной частью они неподвижно соединены с запястьем. Кости пальцев. Каждый палец представляет собой три соединённых друг с другом фаланги, помимо большого пальца, который противопоставлен остальным, и имеет всего две фаланги.

Скелет нижней конечности. Скелет ноги, так же как и рука, состоит из пояса конечности и её свободной части.

Скелет конечностей

Пояс нижних конечностей сформирован парными костями таза. Они срастаются из парных лобковых, подвздошных и седалищных костей. Это происходит к 15-17 годам, когда хрящевое соединение замещается на неподвижное костное. Подобное прочное сочленение необходимо для поддержания органов. Три кости слева и справа от оси тела, образуют по вертлужной впадине, необходимой для сочленения таза с головкой бедренной кости.

Кости свободной нижней конечности подразделяются на:

  • Бедренную. Проксимальным (верхним) эпифизом она соединяется с тазом, а дистальным (нижним) с большой берцовой костью.
  • Надколенник (или коленная чашечка) прикрывает сустав колена, образованный в месте соединения бедренной и большой берцовой костей.
  • Голень представлена большой берцовой костью, расположенной ближе к тазу, и малой берцовой.
  • Кости стопы. Предплюсна представлена семью костями, составляющими 2 ряда. Одной из самых крупных и хорошо развитых является пяточная кость. Плюсна является средним отделом стопы, количество костей входящих в неё равно числу пальцев. Они соединены с фалангами при помощи суставов. Пальцы. Каждый палец состоит из 3-х фаланг, кроме первого, у которого их две.

Важно! В течение жизни стопа подвержена видоизменениям, на ней могут образовываться мозоли и наросты, возможен риск развития плоскостопия. Часто это связано с неправильным выбором обуви.

Строение женщины и мужчины не имеет кардинальных различий . Изменениям подвергаются лишь отдельные части некоторых костей или их размеры. Среди наиболее явных выделяют более узкую грудь и широкий таз у женщины, что связано с родовой деятельностью. Кости мужчин, как правило, длиннее, мощнее женских, имеют больше следов крепления мышц. Отличить женский череп от мужского намного сложнее. Череп мужчин чуть толще женского, у него сильнее выражен контур надбровных дуг и затылочный бугор.

Анатомия Человека. Кости скелета!

Из каких костей состоит скелет человека, детальный рассказ

Строение человека отличается чрезвычайной сложностью, однако минимальный объём информации о функциях скелета, росте костей и их расположение в теле, может помочь в сохранении собственного здоровья.

Средний химический состав костной ткани включает 20-25 % воды, 75-80 % сухого остатка, в том числе 30 % белков и 45 % неорганических соединений. Однако состав ткани изменяется в зависимости от вида и возраста животных, а также от структуры кости. Химический состав различных видов костей крупного рогатого скота представлен в табл. 5.5.

Таблица 55. Химический состав костей крупного рогатого скота

Кости

Содержание, %

влаги

белка

жира

золы

Позвоночник

30-41

14-23

13-20

20-30

Грудная кость

48-53

16-21

13-16

1Ф 17

Тазовая кость

24-30

16-20

22-24

30-33

Ребра

28 31

19-22

10-11

36-40

Трубчатая

15-23

17-23

13-24

40-50

Кулак

17 32

14-21

18 33

28-36

При обработке костной ткани кислотами (соляной, фосфорной и др.) минеральные вещества растворяются и остается мягкая органическая часть - оссеин. Размягчение кости в результате удаления минеральных веществ называют мацерацией. х

В структуру оссеина входят в основном белковые вещества -- коллаген (93 %), оссемукоид, альбумины, глобулины и др. Аминокислотный состав кости отличается низким содержанием глютаминовой кислоты, лизина, отсутствием цистина, триптофана; высоким содержанием глицина, пролнна, оксипролина, составляющих до 43 % обшей суммы аминокислот. Таким образом, белки кости не являются полноценными.

Из органических соединений в составе костной ткани присутствуют липиды, в частности лецитин, соли лимонной кислоты и пр.

Наиболее характерными компонентами костной ткани являются минеральные вещества, составляющие половину массы ткани. Они представлены главным образом фосфорно-кальциевыми солями, необходимыми для жизнедеятельности организма, а также микроэлементами - Al, Mn, Си, РЬ и др.

С возрастом животного наряду с общим увеличением содержания минеральных веществ в костной ткани нарастает содержание карбонатов и уменьшается количество фосфатов. В результате такого изменения кости утрачивают упругость и становятся хрупкими. Изменение свойств кости может быть связано и с недостатком определенных солей в питании, в частности при недостатке кальция при жомовом откорме. Электрооглушение такого скота приводит к раздроблению позвоночника и тазовых костей.

Костный мозг, заполняющий костномозговые полости, содержит в основном жиры (до 98 % в сухом остатке желтого мозга) и в меньшем количестве холинфосфатиды, холестерин, белки и минеральные вещества. В составе жиров преобладают пальмитиновая, олеиновая, стеариновая кислоты.

В соответствии с особенностями химического состава кость используют для производства полуфабрикатов, студней, зельцев, костного жира, желатина, клея, костной муки.

Хрящевая ткань. Хрящевая ткань выполняет опорную п механическую функции. Она состоит из плотного основного вещества, в котором располагаются клетки округлой формы, коллагеновые и эластиновые волокна (рис. 5.14). В зависимости от состава межклеточного вещества различают гиалиновые, волокнистые и эластичные хрящи. Гиалиновый хрящ покрывает суставные поверхности костей, из него построены реберные хрящи и трахея. В межклеточном веществе такого хряща с возрастом откладываются соли кальция. Гиалиновый хрящ полупрозрачен, имеет голубоватый оттенок.

Из волокнистого хряща состоят связки между позвонками, а также сухожилия и связки в месте их прикрепления к костям. Волокнистый хрящ содержит много коллагеновых волокон и незначительное количество аморфного вещества. Он имеет вид полупрозрачной массы.

Эластический хрящ кремового цвета, в межклеточном веществе которого преобладают эластиновые волокна. В эластическом хряще никогда не откладывается известь. Он входит в состав ушной раковины, гортани.

Средний химический состав хрящевой ткани включает: 40-70 % воды,

19-20 % белков, 3,5 % жиров, 2-10 % минеральных веществ, около 1 % гликогена.

Для хрящевой ткани характерно высокое содержание мукопротеида - хондромукоида и мукополисахарида - хондроитинсерной кислоты в основном межклеточном веществе. Важным свойством этой кислоты является её способность образовывать солеобразные соединения с различными белками: коллагеном, альбумином и др. Этим, видимо, объясняется «цементирующая» роль мукополисахаридов в хрящевой ткани.

Хрящевая ткань используется на пищевые цели, а также из нее вырабатываются желатин и клей. Однако качество желатина и клея часто бывает недостаточно высоким, так как мукополисахариды и глюкопротеиды переходят в раствор из ткани вместе с желатином, снижая вязкость и прочность студня.


Строение костной ткани. В состав костной ткани входят, как известно, костные клетки и межклеточная субстанция, которая состоит из основного бесструктурного вещества и оформленной части в виде волокон. Каждая кость по периферии построена из очень плотной , местами тонкой, местами, наоборот, очень толстой стенки, состоящей из компактного костного вещества. Внутри кость по­строена из губчатого костного вещества, состоящего из целого ряда тонких, соединенных со стенкой и между собой костных перекладин, которые в своей массе напоминают мелкопетлистую губку.
Костные перекладины, или трабекулы, распределены в губчатом веществе по траектории сжатия и растяжения, т. е. как бы строго следуя законам механики. Благодаря такой конструкции, они отвечают на испытываемые костью «сжатие», «растяжение» и «скру­чивание», причем каждая перекладина имеет свое специальное значение, а при длительных изменениях условий, в которых находится кость, наступает перестройка внутренней архитектуры кости.
В образовании формы костей имеют значение, наряду с другими причинами (кормление, содержание, эксплуатация и пр.), также и те условия, в которых развивается данная кость. В этом отношении важнейшими факторами являются прилежащие к ней смежные кости и мышцы, а также сосуды, нервы, железы и другие тканевые элементы, влияющие на формообразование кости.
Известно, что поверхность костей, где прикрепляются мышцы, сухожилия и связки, отличается неровностью: она в этом месте вогнута или (чаще) выпукла. При сухожильном способе прикрепле­ния на кости развиваются бугры. Если же мышечные пучки непосредственно вплетаются в надкостницу (при так называемом пери-остальном способе прикрепления), то на кости образуется ровная или даже вогнутая поверхность (различные ямки).
В общем, несмотря на многообразие форм костей, для удобства описания их подразделяют по форме на длинные, короткие, широкие и смешанные. Для рассматриваемого нами вопроса наиболее инте­ресны первые две формы - длинные и короткие кости.
У длинных костей один размер значительно преобладает над остальными. Средняя часть (диафиз), или тело такой кости имеет цилиндрическую или призматическую форму; концы (эпифизы) более или менее утолщены и соединяются с соседними сочленяющи­мися костями. Кости этого типа образуют основу конечностей и играют роль рычагов, приводимых в движение мышцами И сухожилиями.
В коротких костях все три размера приблизительно одинаковы. Кости этого типа встречаются там, где, при прочности соединений, в то же время необходима известная гибкость; сюда относятся кости запястья и заплюсны.
При исследовании наружной формы кости обращают внимание па характер ее поверхностей ; они могут быть плоские, вогнутые или выпуклые, гладкие или шероховатые. Наибольшей гладкостью отличаются суставные поверхности (fades articulares), которые имеются на концах длинных костей и на местах соединения их между собой. В этом случае иногда конец одной кости закругляется, образуя головку, а на другой соответственно этому образуется суставная ямка, причем головка может быть отделена от тела кости перехватом (шейкой). Если суставной конец представляет обширную, но слабо изогнутую поверхность, то он относится к числу сочлененных отростков, примером которых являются суставные отростки позвонков. Короткие кости целиком состоят из губчатого вещества и только снаружи покрыты сравнительно тонким слоем компактного кост­ного вещества.
Концы длинных костей построены так же, как и короткие кости. Тело устроено иначе: оно по всей длине представляет полый ци­линдр, стенку которого образует довольно толстая корка плотного вещества, а полость представляет собой костномозговой канал, сообщающийся с пустотами в substantia spongiosa концов кости. Внутреннее строение костей таково, что при наименьшей затрате материала они имеют наибольшую прочность. В частности, длинные кости, выполняющие роль стоек и рычагов, в большей своей части состоят из плотного вещества, причем тело их полое. Такие кости, будучи легкими и занимая мало места, способны выдерживать наибольшее сопротивление механической силе, которая действует на периферические слои кости. Губчатое вещество встречается там, где при известной прочности и легкости налицо и значительный объем, что наблюдается в коротких костях и на концах длинных; таким путем увеличивается поверхность соприкосновения костей. Расположение пластинок губчатого вещества, кажущееся на первый взгляд беспорядочным, в общем совпадает с направлением наибольшего функционального сжатия и растяжения. Кроме того, в костной ткани нередко образуются еще особые системы скреп. В результате каждая кость имеет строение, наиболее соответствую­щее тем функциональным условиям, в которых она находится , при­чем кривые растяжения или сжатия могут составлять в нескольких смежных костях одну общую систему. Таким образом, структура и функция кости взаимно обусловливают друг друга; это взаимодей­ствие легко обнаруживается при изучении архитектуры губчатого вещества, каждая перекладина которого имеет свое специальное назначение. При изменении условий расположение перекладин меняется, все ненужное, излишнее уничтожается (рассасывается),развиваются системы новых пластинок, примером чему может служить изменение внутреннего строения костей при заживлении перелома.
При микроскопическом изучении строения костной ткани можно обнаружить, что компактное костное вещество состоит из тесно рас-положенных костных пластинок и пронизано многочисленными га-версовыми каналами, которые идут большей частью параллельно длинному разрезу кости, многократно между собой анастомозируясь. Различают пластинки трех родов:общие гаверсовы и промежуточные. Главная масса кости построена из гаверсовых пластинок, которые образуют концентрические наслоения вокруг каналов того же на­звания и в целом представляют собой ряд цилиндров разного диа­метра, вложенных друг в друга. Пространства между отдельными гаверсовыми системами выполнены вставочными или промежуточ­ными пластинками. Общие или главные пластинки составляют самые наружные и самые внутренние (ограничивающие костно­мозговой канал) слои кости.
В каждой пластинке пучки фибрилл идут преимущественно по одному определенному направлению, притом так, что в соседних пластинках эти направления пересекаются между собой.
Гаверсовы каналы содержат, кроме нежной соединительной ткани, кровеносные сосуды, питающие кость.
Отдельные перекладины губчатого вещества состоят из костных пластинок, не имеющих такого правильного расположения, как в плотном веществе; гаверсовы каналы там почти не встречаются.
Гистологическое строение костной ткани трубчатых костей перед­них и задних конечностей у лошади, как показали исследования проф. Н. Ф. Богдашева, находится в прямой зависимости от их физиологической функции. Характерным отличием для пястной кости лошади является сравнительно редкое расположение гавер­совых каналов с большими площадями, занятыми промежуточными пластинками.
В компактном же веществе плюсневой кости гаверсовы системы расположены гуще, но с меньшим количеством промежуточных пла­стинок. Установлена зависимость микроструктуры кости от тол­щины ее стенки; степень развития их находится в зависимости от неодинаковой функциональной нагрузки, падающей на разные участки поперечного сечения трубки. У жеребят до 2-3-месячного возраста гистоструктура костной ткани трубчатых костей иден­тична. Однако в старшем возрасте, по мере диференциации формы самих трубчатых костей, начинают появляться функциональные отличия в гистологическом строении трубчатых костей. Уже в 2- 3-летнем возрасте у лошадей, по данным проф. Н. Ф. Богдашева, «хорошо заметно, что волярный участок стенки всегда имеет значи­тельно гуще расположенные гаверсовы каналы по сравнению с дру­гими участками. В то же время толщина волярной стенки к этому возрасту становится значительно тоньше». На дорзальной стенке в этом возрасте отмечается ее утолщение и наиболее редкое расположение гаверсовых каналов; между ними хорошо выделяются поля , занятые промежуточными пластинками.

Химический состав костной ткани. Бесструктурное костное ве­щество в своей основе состоит из слизеподобного и белковоподобного органических веществ, находящихся в тесном соединении с мине­ральными веществами, главным образом с фосфорнокислыми солями. Волокнистая часть костной ткани состоит из клейдагощих коллаге-новых волокон. Известно, что коллагены являются главной состав­ной частью основного вещества рыхлой соединительной ткани, сухо­жилий, фасций, связок, оссеина костей и хрящей. Коллаген нерастворим ни в воде, ни в слабых кислотах и щелочах; при кипячении с водой он переходит в клей (глютин, желатина).
Коллагены по своему составу характеризуются повышенным содержанием азота (18%) и пониженным содержанием углерода (49%). Они содержат очень большое количество гликоколя, про­теина и оксипролина и совсем не содержат цистина, тирозина и триптофана, являясь, таким образом, неполноценным белком.

Волокнистое вещество вместе со слизеподобным и белковоподобным образует органическую основу костной ткани - оссеин (или костный хрящ). Соединение оссеина с неорганическим веществом (солями извести) создает необходимые физические свойства - упругость и прочность костной ткани. Химический анализ трубча­тых костей у лошадей, по данным проф. Н. Ф. Богдашева, содержит: воды - 9,18%, органических веществ-28,58%. золы - 62,24%, в том числе окиси кальция - 34,37%.

Нормальное количественное соотношение между оссеином и неорганическим веществом под влиянием различных физиологиче­ских и патологических причин может измениться. Как известно, в молодом возрасте кости бывают гораздо беднее минеральными со­лями и отличаются повышенной своей гибкостью и меньшей твер­достью по сравнению с костями взрослого животного. В старом возрасте, наоборот, уменьшается количество содержащегося в ко­стях оссеина, вследствие чего кости этих животных менее устой­чивы к механическому воздействию и больше подвержены перело­мам.

Физические свойства костной ткани. Соединение оссеина с неор­ганическим веществом создает необходимые физические свойства для костной ткани. Упругость костной ткани превосходит упругость дубового дерева. По своей прочности (крепости) костная ткань прочнее гранита и приближается к некоторым металлам - чугуну и железу.

Физиологические свойства костей находятся в некоторой зависимости от их удельного веса. По данным проф. Н. Ф. Богдашева, удельный вес компактного вещества воздушно-сухих костей пясти и плюсны лошади в среднем равен 1,985, причем им отмечено, что удельный вес пястных костей несколько больше удельного веса костей плюсны. Так, например, удельный вес пясти равен 1,995, а удельный вес костей плюсны у той же лошади - 1,976.

Механические свойства (крепость) трубчатых костей у живот­ных находятся в некоторой зависимости от содержания в них каль­ция. Наличие известковых солей в костной ткани увеличивает ее сопротивляемость более чем в 6 раз. По данным проф. Н. Ф. Богдашева, образцы из пястных костей лошадей от 4 до 16-летнего возраста разрушаются лишь при нагрузке от 1840 до 2805 кг/см2, кости жере­бят до 2-летнего возраста выдерживают груз всего лишь от 1300 до 1510 кг/aw2.

Сопоставляя различную механическую устойчивость при сжатии тех или иных участков из стенок трубчатых костей с их микрострук­турой, можно заключить, что самые устойчивые, разрушающиеся при наибольшей нагрузке участки кости - волярная стенка МС3, ко­торая имеет в строении наиболее густо расположенную сеть гаверсовых каналов. Дорзо-медиальные стенки пястных костей, имеющих более редкое расположение гаверсовых систем, с большими про­светами гаверсовых каналов и значительными полями проме­жуточных пластинок, отличаются меньшей сопротивляемостью сжатию.
Отсюда следует, что количество и качество гаверсовых систем и костных полостей на дорзо-медиальной и волярной стенках костей пясти, с одной стороны, и степень устойчивости соответствующих участков при разрушении их, с другой, представляют собой опре­деленную закономерность, которая, по всей вероятности, харак­терна для анатомо-гистологического строения костной ткани вообще.
Сопротивляемость трубчатых костей излому в дорзо-каудальном направлении значительно ниже сопротивляемости в медиально-латеральном направлении. Это положение согласуется с анатоми­ческой формой пястных костей, у которых поперечный диаметр трубок больше продольного диаметра их. Отсюда можно сделать вывод, что при жизни лошади допустима большая возможность перелома костей пясти в дорзо-волярном направлении, чем в латерально-медиальном, если в этих направлениях будет действовать одна и та же механическая сила.

Строение надкостницы и ее роль в физиологии и патологии костной ткани
Вся наружная поверхность кости, за исключением тех мест, где расположен суставной хрящ , и мест прикреплений сухожилий и связок, покрыта надкостницей. Она представляет собой довольно крепкую соединительнотканную пленку бледнорозового цвета, богатую нервами, кровеносными и лимфатическими сосудами. Над­костница плотно удерживается на поверхности кости, благодаря существованию особых прободающих тонких соединительноткан­ных пучков или так называемых шарпеевских волокон, которые, отделяясь от надкостницы, проникают в костную ткань и залегают в ней в особых канальцах.
198
Надкостница очень чувствительна ко всякого рода раздражите­лям, от нее зависит питание прилегающих слоев костной ткани и рост кости в толщину.
Микроскопически можно обнаружить, что надкостница состоит из трех слоев - наружного адвентициального слоя (tunica adven-titia), среднего фиброзно-эластического слоя (tunica fibroblastica) и внутреннего остеобластического слоя (tunica osteoblastica). На­ружный, или поверхностный, слой надкостницы построен из более грубых коллагеновых пучков. В нем заложено большое количество нервных волокон, кровеносных сосудов и лимфатических щелей, питающих костную ткань. Средний слой содержит много эластиче­ских волокон, но мало сосудов.
Внутренний, или глубокий (остеогенный), слой более нежен и беден сосудами. Он состоит из рыхлой соединительной ткани и кле­ток камбиального слоя. В этом остеобластическом слое находятся многочисленные камбиальные клеточные элементы, сохраняющие способность давать поколения образующих кость остеобластов. У молодых животных с растущей костью, так же как и во время эмбрионального развития, остеобласты и дающие им начало индиферентные скелетогенные клетки в этом слое особенно многочисленны и образуют на поверхности кости особую прослойку, называемую костным камбием или просто камбиальным слоем, которым над­костница и обеспечивает рост кости.

При росте кости остеобласты энергично размножаются, выра­батывают промежуточную субстанцию костной ткани и одна за другой превращаются в настоящие костные клетки вновь сформи­рованных костных пластов.

У старых животных остеобласты расположены в надкостнице уже не сплошным слоем, как у молодых индивидуумов, а отдель­ными участками. Отсюда у них темпы регенеративных процессов в костной ткани при переломах бывают относительно замедленными.
Таким образом, при повреждении костей их восстановление идет главным образом со стороны надкостницы, которая, будучи обильно снабженной кровеносными сосудами, доставляет приток крови в толщу костной ткани. Известно, что кость, оголенная от надкост­ницы на значительном участке, отмирает из-за отсутствия притока питательных веществ.

При механических, химических или биологических поврежде­ниях в надкостнице развивается патологический процесс, характе­ризующийся в зависимости от причины серозным, гнойным, фиброз­ным или оссифицирующим воспалением.
Костный мозг и его значение в физиологии"и патологии костной ткани
Костный мозг заполняет костномозговой канал и костномозговые полости губчатого вещества. Он представляет собой очень нежную красного цвета массу , богатую кровеносными сосудами, основу которой составляет ретикулярная ткань; в петлях последней помещаются зрелые элементы крови, молодые формы их и особые гигантские клетки.
Физиологическое значение красного мозга очень велико и разносторонне. Прежде всего он относится к числу кроветворных орга­нов, причем у молодых животных кроветворение происходит по всему костному мозгу, тогда как у взрослых и старых животных оно осуществляется только в известной части костного мозга. Остальная же часть замещается жировой тканью, имеющей желтовато-красноватую окраску и называющейся желтым костным мозгом. Кроме того, кровеносные сосуды мозга обильно питают внутренний слой кости. Красный мозг играет важную роль в развитии и росте костной ткани. Остеобласты принимают такое же участие, как и надкостница, в формировании новой костной ткани, а остеокласты рассасывают и уничтожают избыточную костную ткань. Благодаря этой диаметрально противоположной работе остеобластов и остеокластов кость имеет возможность до глубокой старости перестраи­вать свою архитектонику соответственно механическим условиям сжатия, растяжения или скручивания.

В старческом возрасте желтый мозг превращается в студенистый или желатинозный костный мозг. Он также появляется у истощен­ных животных в молодом возрасте при голодании, различных xpo-i(нических заболеваниях (кахексии). Атрофия красного мозга и преждевременное замещение его желтым в молодом возрасте имеют место при тяжелых расстройствах питания, инфекции и интоксика­ции, а также возможны при остеосклерозе и развившихся новообра­зованиях.
При травмах и переломах костей в костном мозгу наблюдаются кровоизлияния от мелких, тёмнокрасных точек и пятен до крово­излияний значительной величины с разрушением костномозговой ткани.

Воспаление костного мозга может наступить при многих инфек­ционных, токсических и травматических заболеваниях. Наиболее частая форма воспаления - это серозный остеомиэлит, характери­зующийся гиперемией и серозной отечностью мозга. При геморраги­ческом остеомиэлите заметны сильная гиперемия, геморрагические инфильтраты и выраженная отечность мозга. Гнойный остеомиэлит ха­рактеризуется развитием в костном мозгу мелких или более крупных абсцессов или более разлитой, гнойной инфильтрации костного мозга.

Продуктивное воспаление костного мозга наблюдается при хро­ническом фиброзном остеомиэлите, сопровождающемся, как из­вестно, разращением ретикуло-эндотелиальной ткани с последую­щим фиброзным уплотнением костного мозга.

Кровоснабжение костей конечностей лошади
Громадное значение васкуляризации в физиологии и патологии костной ткани у животных неоспоримо. Отрадно отметить, что прио­ритет в изучении этого важного для ветеринарии вопроса принадлежит советским авторам. Рентгенографическим методом исследования установлено, что общим для всех костей, независимо от их формы и типа, является наличие периостальных и интраоссальных сосудов, причем периостальиые сосуды питают главным образом костную ткань , а интраоссальные - костный мозг. Обе сосудистые системы костей соединяются громадным количеством анастомозов через многочисленные каналы компактного и губчатого веществ. Сосуды надкостницы и костного мозга анастомозируются через перфорирующие каналы Фолькмана.

Неподатливость стенок каналов Фолькмана ограничивает диа­метр лежащих в них сосудов, что может служить при некоторых заболеваниях причиной тромбообразования. Кроме того, через сосуды этих каналов распространяется воспалительный процесс с периоста на костный мозг и обратно.

Периостальная сосудистая сеть, благодаря множеству анасто­мозов, имеет мелкопетлистое строение, иногда в виде очень краси­вого кружевного узора. Сети этих сосудов своими ветвями соединяются с крупными магистралями кости и с сосудами подкожной клетчатки.

Интраоссальные сосуды костей конечности подразделяются на три основных типа. Первый тип сосудов свой питающих эпифизы и метафизы, колеблется, особенно за счет добавочных ветвей, тогда как диафиз всегда имеет один доственен всем коротким костям, которые имеют несколько питающих сосудов, входящих в.кость через все прикрепляющие поверхности, свободные от сочленений. Второй тип - сосуды, располагающиеся в длинных трубчатых костях, в которых четко выступают три сосу­дистые области: сосуды эпифизов, метафизов и диафиза. Число довольно крупный сосуд, проникающий в кость. К третьему типу сосудов относится своеобразное построение артериальной системы копытной кости.

Лимфообращение в костной ткани
Анатомия лимфатической системы костей и, в частности, анато­мия отводящих лимфатических сосудов надкостницы костей и их компактного и губчатого костного вещества, а также костного мозга, как справедливо на это указывает проф. Д. А. Жданов, «принадлежит к наиболее трудным разделам учения о глубокой лимфатической системе». Литературные данные об анатомии лим­фатической системы костей у животных, к сожалению, очень незна­чительны и притом противоречивы; они основаны по преимуществу на отдельных, далеко не полных и не всегда безупречных опытах. Между тем актуальность изучения этой проблемы неоспорима. Иногда вопросы этиологии и патогенеза в патологии и терапии кост-J ной ткани, нам кажется, могли бы найти свое объяснение в раз­решении этой проблемы.

Наблюдениями некоторых авторов установлено, что костные полости своими отростками (канальцами), проникающими сквозь костные пластинки, соединяются с периваскулярными лимфатиче­скими пространствами гаверсовых каналов, которые в свою очередь переходят в периостальные лимфатические сети.

Баум (1912) инъицировал контрастную жидкость уколом в толщу | кости отводящих лимфатических сосудов костей крупных до­машних животных и установил две группы отводящих лимфа­тических сосудов костей: 1) входящие в места с кровеносными сосудами из питательных отверстий, преимущественно трубчатых костей, и 2) происходящие из субпериостальной лимфатической сети.

Г. М. Иосифов (1927) уколом в надкостницу большеберцовой кости инъицировал массу Герота в отводящие лимфатические со­суды, идущие к глубокому коллатеральному лимфатическому стволу, сопровождающему малоберцовую артерию. Через укол в надкост­ницу наружной лодыжки он инъицировал указанную массу в лим­фатические сосуды, впадающие в поверхностные лимфатические коллекторы конечности.

[В. П. Гуков (1937) инъицировал суспензии туши в костный мозг бедра живой собаке и констатиров"ал распространение этой туши по гаверсовым каналам , а также поглощение ее костными клетками и их отростками, заполняющими костные канальцы.
|Д. А. Жданов (1940) инъицировал контрастную жидкость в над­костничные лимфатические сосуды большеберцовой кости и наблю­дал, что начальная надкостничная лимфатическая сеть открывается с большим трудом только у краев инъекционного пятна. Яснее на­полняются сосуды в верхних слоях надкостницы на медиальной и латеральной поверхностях кости. По его данным, лимфатические сосуды идут в трех направлениях: одни у переднего гребня и ме­диального края кости переходят, прободая фасцию, в медиальную группу подкожных коллекторов голени; другие направляются, пере­секая латеральную поверхность кости, к передней большеберцовой артерии и вступают в сопровождающий ее путь глубоких лимфати­ческих коллекторов; третьи у медиального края кости уходят под фасцию и идут к задней большеберцовой артерии и с нею в напра­влении к подколенной ямке.
Из приведенного литературного обзора видно, что в вопросе периваскуляризации лимфатических пространств компактной кости.

Нет противоречивых мнений. Однако остались невыясненными взаи­моотношения периваскулярных пространств с настоящими оформ­ленными лимфатическими сосудами. Некоторые авторы отрицают существование в костных полостях щелевидных пространств вокруг остеоцитов, а также сомнительно и наличие соковых щелей вокруг островков костных клеток в канальцах, пронизывающих костные пластинки. Нет ясности в анатомии отводящих лимфатических со­судов костей у животных вообще и у лошади в частности. Не решен вопрос о наличии или отсутствии лимфатических сосудов в костному мозгу.
Совершенно не выяснена роль и значение костной лимфати­ческой системы при патологии и терапии костной ткани. Все эти вопросы требуют своего ближайшего разрешения путем проведения экспериментальных и клинических исследований.

В состав свежей кости взрослого человека входит вода – 50%, жир – 16%, прочие органические вещества – 12%, неорганические в-ва – 22%.

Обезжиренные и высушенные кости содержат приблизительно 2/3 неорганических и 1/3 органических веществ. Кроме того, в составе костей имеются витамины А, Д и С.

Органическое вещество костной ткани – оссеин – придает им эластичность. Он растворяется при кипячении в воде, образуя костный клей. Неорганическое в-во костей представлено главным образом солями кальция, которые с небольшой примесью других минеральных в-в образуют кристаллы гидрооксиапатита.

Сочетание органических и неорганических в-в обуславливают прочность и легкость костной ткани. Так, при малом удельном весе, равном 1.87, т.е. в два раза не превышающим удельный вес воды, прочность кости превосходит прочность гранита. Бедренная кость, например, при сжатии по продольной оси выдерживает нагрузки свыше 1500 кг. Если кость подвергнуть обжиганию, то органическое в-во сгорает, а неорганическое остается и сохраняет форму кости и ее твердость, но такая кость становится очень хрупкой и при надавливании крошится. Наоборот, после вымачивания в растворе, кислот, в результате которого растворяются минеральные соли, а органическое в-во остается, кость также сохраняет свою форму, но становится настолько эластичной, что ее можно завязать в узел. Следовательно, эластичность кости зависит от оссеина, а твердость ее – от минеральных в-в.

Химический состав костей связан с возрастом, функциональной нагрузкой, общим состоянием организма. Чем большее нагрузка на кость, тем больше неорганических в-в. Так, например бедренная кость и поясничные позвонки содержат наибольшее количество углекислого кальция. С увеличением возраста количество органических в-в уменьшается, а неорганических увеличивается. У маленьких детей оссеина сравнительно больше, соответственно, кости отличаются большой гибкостью и поэтому редко ломаются. Наоборот, в старости соотношение органических и неорганических в-в изменяется в пользу последних. Кости становятся менее эластичными и более хрупкими, вследствие чего переломы костей чаще всего наблюдаются у стариков.

Классификация костей

По форме, функции и развитию кости делятся на три части: трубчатые, губчатые, смешанные.

Трубчатые кости входят в состав скелета конечностей, играя роль рычагов в тех отделах тела, где преобладают движения с большим размахом. Трубчатые кости делятся на длинные – плечевая кость, кости предплечья, бедренная кость, кости голени и короткие – кости пясти, плюсны и фаланг пальцев. Трубчатые кости характеризуются наличием средней части – диафиза , содержащего полость (костномозговая полость), и двух расширенных концов – эпифизов . Один из эпифизов располагается ближе к туловищу – проксимальный , другой находится дальше от него – дистальный . Участок трубчатой кости, расположенный между диафизом и эпифизом, носит название метафиза . Отростки кости, служащие для прикрепления мышц, называются апофизами.

Губчатые кости находятся в тех отделах скелета, где необходимо обеспечить достаточную прочность и опору при небольшом размахе движений. Среди губчатых костей различают длинные (ребра, грудина), короткие (позвонки, кости запястья, предплюсны) и плоские (кости черепа, кости поясов). К губчатым костям относятся и сесамовидные кости (коленная чашечка, гороховидная кость, сесамовидные кости пальцев кисти и стопы). Они располагаются около суставов, с костями скелета непосредственно не связаны и развиваются в толще сухожилий мышц. Присутствие этих костей способствует увеличению плеча силы мышцы и, следовательно, увеличению ее момента вращения.

Смешанные кости – сюда относятся кости, сливающиеся из нескольких частей, имеющих разную функцию, строение и развитие (кости основания черепа).

Просмотров