Fascinating chemistry experiments. Science show for children for the holiday

Home experiments for children 4 years old require imagination and knowledge simple laws chemistry and physics. “If these sciences were not taught very well at school, you will have to make up for lost time,” many parents will think. This is not so, experiments can be very simple, not requiring special knowledge, skills and reagents, but at the same time explaining the fundamental laws of nature.

Experiments for children at home will help to practical example explain the properties of substances and the laws of their interaction, will awaken interest in independent exploration of the world around us. Interesting physical experiments will teach children to be observant and help them think logically, establishing patterns between ongoing events and their consequences. Perhaps the kids will not become great chemists, physicists or mathematicians, but they will forever retain warm memories of parental attention in their souls.

From this article you will learn

Unfamiliar paper

Kids like to make appliqués out of paper and draw pictures. Some 4-year-old children learn the art of origami with their parents. Everyone knows that paper is soft or thick, white or colored. What can an ordinary person do? White list paper, if you experiment with it?

An animated paper flower

Cut out a star from a sheet of paper. Its rays bend inward in the form of a flower. Fill a cup with water and lower the star onto the surface of the water. After some time, the paper flower, as if alive, will begin to open. The water will wet the cellulose fibers that make up the paper and spread them out.

Strong bridge

This paper experiment will be interesting for children 3 years old. Ask the kids how to place an apple in the middle of a thin sheet of paper between two glasses so that it does not fall. How can you make a paper bridge strong enough to support the weight of an apple? We fold a sheet of paper into an accordion shape and place it on the supports. Now it can support the weight of the apple. This can be explained by the fact that the shape of the structure has changed, which made the paper strong enough. The properties of materials that become stronger depending on their shape are the basis for the designs of many architectural creations, for example, the Eiffel Tower.

An animated snake

Scientific evidence of movement warm air upward can be brought with the help of simple experience. A snake is cut out of paper by cutting a circle in a spiral. You can revive a paper snake very simply. A small hole is made in her head and suspended by a thread above a heat source (battery, heater, burning candle). The snake will begin to rotate quickly. The reason for this phenomenon is the upward warm flow of air, which unwinds the paper snake. This is exactly how you can make paper birds or butterflies, beautiful and colorful, by hanging them under the ceiling in your apartment. They will rotate from the movement of air, as if flying.

Who is stronger

This fun experiment will help you determine which paper shape is stronger. For the experiment you will need three sheets of office paper, glue and several thin books. A cylindrical column is glued from one sheet of paper, and from another - triangular shape, and from the third - rectangular. They place the “columns” vertically and test them for strength, carefully placing books on top. As a result of the experiment, it turns out that the triangular column is the weakest, and the cylindrical column is the strongest - it will withstand the greatest weight. It is not for nothing that columns in churches and buildings are made in a cylindrical shape; the load on them is distributed evenly over the entire area.

Amazing salt

Regular salt is found in every home today; no meal can be prepared without it. You can try to make beautiful children's crafts from this available product. All you need is salt, water, wire and a little patience.

Salt has interesting properties. It can attract water to itself, dissolving in it, thereby increasing the density of the solution. But in a supersaturated solution, the salt again turns into crystals.

To conduct an experiment with salt, bend a beautiful symmetrical snowflake or other figure from a wire. In a jar with warm water dissolve the salt until it stops dissolving. Dip a bent wire into a jar and place it in the shade for several days. As a result, the wire will become overgrown with salt crystals, and will look like a beautiful ice snowflake that will not melt.

Water and ice

Water exists in three states of aggregation: steam, liquid and ice. The purpose of this experiment is to introduce children to the properties of water and ice and compare them.

Pour water into 4 ice trays and place them in the freezer. To make it more interesting, you can tint the water with different dyes before freezing. Poured into a cup cold water, and throw two ice cubes there. Simple ice boats or icebergs will float on the surface of the water. This experiment will prove that ice is lighter than water.

While the boats are floating, the remaining ice cubes are sprinkled with salt. They'll see what happens. Through a short time, before the indoor float in the cup has time to sink (if the water is quite cold), the cubes sprinkled with salt will begin to crumble. This is explained by the fact that the freezing point of salt water is lower than normal water.

Fire that doesn't burn

In ancient times, when Egypt was a powerful country, Moses fled from the wrath of Pharaoh and tended flocks in the desert. One day he saw a strange bush that was burning and did not burn. It was a special fire. Can objects that are engulfed in ordinary flame remain safe and sound? Yes, this is possible, this can be proven through experience.

For the experiment you will need a sheet of paper or a banknote. A tablespoon of alcohol and two tablespoons of water. The paper is moistened with water so that the water is absorbed into it, alcohol is poured on top and set on fire. Fire appears. This is burning alcohol. When the fire goes out, the paper will remain intact. The experimental result can be explained very simply - the combustion temperature of alcohol, as a rule, is not enough to evaporate the moisture with which the paper is impregnated.

Natural indicators

If your child wants to feel like a real chemist, you can make special paper for him that will change color depending on the acidity of the environment.

Natural indicator prepared from juice red cabbage containing anthocyanin. This substance changes color depending on what liquid it comes into contact with. In an acidic solution, paper soaked in anthocyanin will turn red. yellow, in a neutral solution it will turn green, and in an alkaline solution it will turn blue.

To prepare a natural indicator, take filter paper, a head of red cabbage, cheesecloth and scissors. Chop the cabbage thinly and squeeze the juice through cheesecloth, squeezing it with your hands. Soak a sheet of paper in juice and dry. Then cut the made indicator into strips. The child can dip a piece of paper into four different liquids: milk, juice, tea or soap solution, and watch how the color of the indicator changes.

Electrification by friction

In ancient times, people noticed the special ability of amber to attract light objects if rubbed with a woolen cloth. They did not yet have knowledge about electricity, so they explained this property by the spirit living in the stone. It is from the Greek name for amber - electron - that the word electricity comes.

It’s not just amber that has such amazing properties. You can conduct a simple experiment to see how a glass rod or plastic comb attracts small pieces of paper. To do this, rub the glass with silk and the plastic with wool. They will begin to attract small pieces of paper that will stick to them. Over time, this ability of items will disappear.

You can discuss with children that this phenomenon occurs due to electrification by friction. If fabric rubs quickly against an object, sparks may appear. Lightning in the sky and thunder are also a consequence of friction of air currents and the occurrence of electrical discharges in the atmosphere.

Solutions of different densities - interesting details

Get colorful rainbow in a glass of liquids different colors You can prepare the jelly and pour it layer by layer. But there is a simpler way, although not as tasty.

To carry out the experiment you will need sugar, vegetable oil plain water and dyes. Concentrated sweet syrup is prepared from sugar, and clean water painted with dye. Sugar syrup is poured into a glass, then clean water is poured carefully along the wall of the glass so that the liquids do not mix, and vegetable oil is added at the end. The sugar syrup should be cold and the colored water should be warm. All liquids will remain in the glass like a small rainbow, without mixing with each other. The thickest sugar syrup will be at the bottom, the water will be at the top, and the lightest oil will be on top of the water.

Color explosion

Another interesting experiment can be carried out using different densities of vegetable oil and water, creating a color explosion in a jar. For the experiment you will need a jar of water, a few tablespoons of vegetable oil, and food coloring. In a small container, mix several dry food colors with two tablespoons of vegetable oil. Dry grains of dyes do not dissolve in oil. Now the oil is poured into a jar of water. Heavy grains of dye will settle to the bottom, gradually freeing themselves from the oil, which will remain on the surface of the water, forming colored swirls, as if from an explosion.

Home volcano

Useful geographic knowledge may not be so boring for a four-year-old if you provide a visual demonstration of a volcano erupting on an island. To carry out the experiment you will need baking soda, vinegar, 50 ml of water and the same amount of detergent.

A small plastic cup or bottle is placed in the mouth of a volcano, molded from colored plasticine. But first, baking soda is poured into a glass, water tinted red and detergent are poured. When the improvised volcano is ready, a little vinegar is poured into its mouth. A rapid foaming process begins due to the fact that soda and vinegar react. “Lava” formed by red foam begins to pour out of the volcano’s mouth.

Experiments for 4-year-old children, as you have seen, do not require complex reagents. But they are no less fascinating, especially with interesting story about the reason for what is happening.

Children are always trying to learn something new every day and they always have a lot of questions. They can explain certain phenomena, or they can clearly show how this or that thing, this or that phenomenon works. In these experiments, children will not only learn something new, but also learn how to create different crafts with which they can then play.

1. Experiments for children: lemon volcano

You will need:

– 2 lemons (for 1 volcano)

- baking soda

– food coloring or watercolor paints

- dishwashing liquid

– wooden stick or spoon (if desired)

- tray.

1. Cut off the bottom of the lemon so it can be placed on a flat surface.

2. On the back side, cut out a piece of lemon as shown in the image.

* You can cut off half a lemon and make an open volcano.

3. Take the second lemon, cut it in half and squeeze the juice into a cup. This will be the reserved lemon juice.

4. Place the first lemon (with the cut out part) on the tray and use a spoon to “remember” the lemon inside to squeeze out some of the juice. It is important that the juice is inside the lemon.

5. Add food coloring or watercolor inside the lemon, but do not stir.

6. Pour dish soap inside the lemon.

7. Add a full spoon of baking soda to the lemon. The reaction will begin. You can use a stick or spoon to stir everything inside the lemon - the volcano will begin to foam.

8. To make the reaction last longer, you can gradually add more soda, dyes, soap and reserve lemon juice.

2. Home experiments for children: electric eels made from chewing worms

You will need:

– 2 glasses

– small capacity

– 4-6 gummy worms

– 3 tablespoons baking soda

– 1/2 spoon of vinegar

– 1 cup of water

– scissors, kitchen or stationery knife.

1. Using scissors or a knife, cut lengthwise (precisely lengthwise - it won't be easy, but be patient) each worm into 4 (or more) pieces.

* The smaller the piece, the better.

*If the scissors do not cut properly, try washing them with soap and water.

2. Mix water and baking soda in a glass.

3. Add pieces of worms to the solution of water and soda and stir.

4. Leave the worms in the solution for 10-15 minutes.

5. Using a fork, transfer the worm pieces to a small plate.

6. Pour half a spoon of vinegar into an empty glass and start putting worms into it one by one.

* The experiment can be repeated if you wash the worms plain water. After a few attempts, your worms will begin to dissolve, and then you will have to cut a new batch.

3. Experiments and experiments: a rainbow on paper or how light is reflected on a flat surface

You will need:

– bowl of water

– clear nail polish

- small pieces of black paper.

1. Add 1-2 drops of clear nail polish to a bowl of water. Watch how the varnish spreads through the water.

2. Quickly (after 10 seconds) dip a piece of black paper into the bowl. Take it out and let it dry on a paper towel.

3. After the paper has dried (this happens quickly) start turning the paper and look at the rainbow that appears on it.

* To better see a rainbow on paper, look at it under the sun's rays.

4. Experiments at home: rain cloud in a jar

As small drops of water accumulate in a cloud, they become heavier and heavier. Eventually they will reach such a weight that they can no longer remain in the air and will begin to fall to the ground - this is how rain appears.

This phenomenon can be shown to children using simple materials.

You will need:

- shaving foam

- food coloring.

1. Fill the jar with water.

2. Apply shaving foam on top - it will be a cloud.

3. Have your child start dripping food coloring onto the “cloud” until it starts to “rain”—drops of coloring begin to fall to the bottom of the jar.

During the experiment, explain this phenomenon to your child.

You will need:

– warm water

sunflower oil

– 4 food colors

1. Fill the jar 3/4 full with warm water.

2. Take a bowl and stir 3-4 tablespoons of oil and a few drops of food coloring into it. IN in this example 1 drop of each of 4 dyes was used - red, yellow, blue and green.

3. Using a fork, stir the coloring and oil.

4. Carefully pour the mixture into a jar of warm water.

5. Watch what happens - the food coloring will begin to slowly fall through the oil into the water, after which each drop will begin to disperse and mix with the other drops.

* Food coloring dissolves in water, but not in oil, because... The density of oil is less than water (that’s why it “floats” on water). The dye droplet is heavier than the oil, so it will begin to sink until it reaches the water, where it will begin to disperse and look like a small fireworks display.

6. Interesting experiments: in a circle in which the colors merge

You will need:

– a wheel cut out of paper, painted in rainbow colors

– elastic band or thick thread

– cardboard

- glue stick

- scissors

– skewer or screwdriver (to make holes in the paper wheel).

1. Select and print the two templates you want to use.

2. Take a piece of cardboard and use a glue stick to glue one template to the cardboard.

3. Cut out the glued circle from cardboard.

4. TO back side Glue the second template onto the cardboard circle.

5. Use a skewer or screwdriver to make two holes in the circle.

6. Thread the thread through the holes and tie the ends into a knot.

Now you can spin your top and watch how the colors merge on the circles.

7. Experiments for children at home: jellyfish in a jar

You will need:

– small transparent plastic bag

– transparent plastic bottle

- food coloring

- scissors.

1. Place the plastic bag on a flat surface and smooth it out.

2. Cut off the bottom and handles of the bag.

3. Cut the bag lengthwise on the right and left so that you have two sheets of polyethylene. You will need one sheet.

4. Find the center of the plastic sheet and fold it like a ball to make a jellyfish head. Tie a thread in the area of ​​the “neck” of the jellyfish, but not too tightly - you need to leave a small hole through which to pour water into the jellyfish’s head.

5. There is a head, now let's move on to the tentacles. Make cuts in the sheet - from the bottom to the head. You need approximately 8-10 tentacles.

6. Cut each tentacle into 3-4 smaller pieces.

7. Pour some water into the jellyfish's head, leaving room for air so the jellyfish can “float” in the bottle.

8. Fill a bottle with water and put your jellyfish in it.

9. Add a couple drops of blue or green food coloring.

* Close the lid tightly to prevent water from spilling out.

* Let the children turn the bottle over and watch the jellyfish swim in it.

8. Chemical experiments: magic crystals in a glass

You will need:

glass tumbler or bowl

– plastic bowl

– 1 cup Epsom salts (magnesium sulfate) – used in bath salts

– 1 cup hot water

- food coloring.

1. Place Epsom salts in a bowl and add hot water. You can add a couple of drops of food coloring to the bowl.

2. Stir the contents of the bowl for 1-2 minutes. Most of the salt granules should dissolve.

3. Pour the solution into a glass or glass and place it in the freezer for 10-15 minutes. Don't worry, the solution is not so hot that the glass will crack.

2

Guys, we put our soul into the site. Thank you for that
that you are discovering this beauty. Thanks for the inspiration and goosebumps.
Join us on Facebook And In contact with

We have a lot of things in our kitchen that can be used for interesting experiments for children. Well, for myself, to be honest, make a couple of discoveries from the “how did I not notice this before” category.

website I chose 9 experiments that will delight children and raise many new questions in them.

1. Lava lamp

Needed: Salt, water, a glass of vegetable oil, some food coloring, a large transparent glass or glass jar.

Experience: Fill the glass 2/3 with water, pour into the water vegetable oil. Oil will float on the surface. Add food coloring to water and oil. Then slowly add 1 teaspoon of salt.

Explanation: Oil is lighter than water, so it floats on the surface, but salt is heavier than oil, so when you add salt to a glass, the oil and salt begin to sink to the bottom. As the salt breaks down, it releases oil particles and they rise to the surface. Food coloring will help make the experience more visual and spectacular.

2. Personal rainbow

Needed: A container filled with water (bathtub, basin), a flashlight, a mirror, a sheet of white paper.

Experience: Pour water into a container and place a mirror on the bottom. We direct the light of the flashlight onto the mirror. The reflected light must be caught on the paper on which a rainbow should appear.

Explanation: A ray of light consists of several colors; when it passes through the water, it breaks down into its component parts - in the form of a rainbow.

3. Vulcan

Needed: Tray, sand, plastic bottle, food coloring, soda, vinegar.

Experience: A small volcano should be molded around a small plastic bottle from clay or sand - for the surroundings. To cause an eruption, you should pour two tablespoons of soda into the bottle, pour in a quarter cup warm water, add a little food coloring, and at the end pour in a quarter cup of vinegar.

Explanation: When baking soda and vinegar come into contact, a violent reaction begins, releasing water, salt and carbon dioxide. Gas bubbles push the contents out.

4. Growing crystals

Needed: Salt, water, wire.

Experience: To obtain crystals, you need to prepare a supersaturated salt solution - one in which, when added new portion salt does not dissolve. In this case, you need to keep the solution warm. To make the process go better, it is desirable that the water be distilled. When the solution is ready, it must be poured into a new container to get rid of the debris that is always in the salt. Next, you can lower a wire with a small loop at the end into the solution. Place the jar in warm place so that the liquid cools more slowly. In a few days, beautiful salt crystals will grow on the wire. If you get the hang of it, you can grow fairly large crystals or patterned crafts on twisted wire.

Explanation: As the water cools, the solubility of the salt decreases, and it begins to precipitate and settle on the walls of the vessel and on your wire.

5. Dancing coin

Needed: Bottle, coin to cover the neck of the bottle, water.

Experience: The empty, unclosed bottle should be placed in the freezer for a few minutes. Moisten a coin with water and cover the bottle removed from the freezer with it. After a few seconds, the coin will begin to jump and, hitting the neck of the bottle, make sounds similar to clicks.

Explanation: The coin is lifted by air, which compressed in the freezer and occupied a smaller volume, but has now heated up and begun to expand.

6. Colored milk

Needed: Whole milk, food coloring, liquid detergent, cotton swabs, plate.

Experience: Pour milk into a plate, add a few drops of coloring. Then you need to take a cotton swab, dip it in the detergent and touch the swab to the very center of the plate with milk. The milk will begin to move and the colors will begin to mix.

Explanation: The detergent reacts with the fat molecules in the milk and causes them to move. This is why skim milk is not suitable for the experiment.

7. Fireproof bill

Needed: Ten-ruble bill, tongs, matches or lighter, salt, 50% alcohol solution (1/2 part alcohol to 1/2 part water).

Experience: Add a pinch of salt to the alcohol solution, immerse the bill in the solution until it is completely saturated. Remove the bill from the solution with tongs and let it drain excess liquid. Set the bill on fire and watch it burn without getting burned.

Explanation: As a result of combustion ethyl alcohol water, carbon dioxide and heat (energy) are formed. When you set fire to a bill, the alcohol burns. The temperature at which it burns is not sufficient to evaporate the water with which the paper bill is soaked. As a result, all the alcohol burns out, the flame goes out, and the slightly damp ten remains intact.

9. Camera obscura

You will need:

A camera that supports long shutter speeds (up to 30 s);

Large sheet of thick cardboard;

Masking tape (for gluing cardboard);

A room with a view of anything;

Sunny day.

1. Cover the window with cardboard so that light does not come from the street.

2. We make a smooth hole in the center (for a room 3 meters deep, the hole should be about 7-8 mm).

3. When your eyes get used to the darkness, you will see an inverted street on the walls of the room! The most visible effect will be achieved on a bright sunny day.

4. Now the result can be shot with a camera on long exposure. A shutter speed of 10-30 seconds is fine.

So complicated but interesting science, like chemistry, always causes an ambiguous reaction among schoolchildren. The children are interested in experiments that result in the production of substances bright colors, gases are released or precipitation occurs. And here complex equations chemical processes Only a few of them like to write.

The importance of entertaining experiences

According to modern federal standards in secondary schools introduced Such a program subject as chemistry also did not go unnoticed.

As part of the study of complex transformations of substances and solving practical problems, the young chemist hones his skills in practice. It is through unusual experiences that a teacher develops an interest in the subject in his students. But in regular lessons, it is difficult for a teacher to find enough free time for non-standard experiments, and there is simply no time to conduct them for children.

To correct this, additional elective and optional courses were invented. By the way, many children who are interested in chemistry in the 8th and 9th grades become doctors, pharmacists, and scientists in the future, because in such classes the young chemist gets the opportunity to independently conduct experiments and draw conclusions from them.

What courses involve fun chemical experiments?

In the old days, chemistry for children was available only from the 8th grade. None special courses or extracurricular activities Children were not offered any chemical education. In fact, there was simply no work with gifted children in chemistry, which had a negative impact on the attitude of schoolchildren to this discipline. The children were afraid and did not understand complex chemical reactions, and made mistakes in writing ionic equations.

In connection with the reform modern system education, the situation has changed. Now in educational institutions are also offered in lower grades. The children are happy to do the tasks that the teacher offers them and learn to draw conclusions.

Chemistry-related electives help high school students gain skills in working with laboratory equipment, and those designed for junior schoolchildren contain vivid, demonstrative chemical experiments. For example, children study the properties of milk and become familiar with the substances that are obtained when it sours.

Experiences related to water

Entertaining chemistry is interesting for children when, during the experiment, they see an unusual result: the release of gas, bright color, unusual sediment. A substance such as water is considered ideal for conducting a variety of entertaining chemical experiments for schoolchildren.

For example, chemistry for 7-year-old children can begin with an introduction to its properties. The teacher tells the children that most of our planet is covered with water. The teacher also informs the students that in a watermelon there is more than 90 percent of it, and in a person it is about 65-70%. After telling schoolchildren how important water is for humans, you can offer them some interesting experiments. At the same time, it is worth emphasizing the “magic” of water in order to intrigue schoolchildren.

By the way, in this case, the standard chemistry set for children does not involve any expensive equipment - it is quite possible to limit yourself to affordable devices and materials.

Experience "Ice Needle"

Let us give an example of such a simple and at the same time interesting experiment with water. This is the construction of an ice sculpture - a “needle”. For the experiment you will need:

  • water;
  • salt;
  • ice cubes.

The duration of the experiment is 2 hours, so such an experiment cannot be carried out in a regular lesson. First you need to pour water into an ice tray and place it in the freezer. After 1-2 hours, after the water turns into ice, the entertaining chemistry can continue. For the experiment you will need 40-50 ready-made ice cubes.

First, children must arrange 18 cubes on the table in the form of a square, leaving a free space in the center. Next, after sprinkling them with table salt, they are carefully applied to each other, thus gluing them together.

Gradually all the cubes are connected, and the result is a thick and long “needle” of ice. To make it, 2 teaspoons are enough table salt and 50 small pieces of ice.

You can tint the water to make the ice sculptures multi-colored. And as a result of such a simple experience, chemistry for 9-year-old children becomes an understandable and fascinating science. You can experiment by gluing ice cubes in the shape of a pyramid or diamond.

Experiment "Tornado"

This experiment does not require special materials, reagents or tools. The guys can do it in 10-15 minutes. For the experiment, let's stock up:

  • plastic transparent bottle with a cap;
  • water;
  • dishwashing detergent;
  • sparkles.

The bottle should be filled 2/3 with plain water. Then add 1-2 drops of dishwashing detergent to it. After 5-10 seconds, pour a couple of pinches of glitter into the bottle. Screw the cap tightly, turn the bottle upside down, holding it by the neck, and twist it clockwise. Then we stop and look at the resulting vortex. Before the “tornado” starts working, you will have to spin the bottle 3-4 times.

Why does a “tornado” appear in an ordinary bottle?

When committed by a child circular movements a whirlwind similar to a tornado arises. The rotation of water around the center occurs due to the action of centrifugal force. The teacher tells the children about how scary tornadoes are in nature.

Such an experience is absolutely safe, but after it, chemistry for children becomes a truly fabulous science. To make the experiment more vivid, you can use a coloring agent, for example, potassium permanganate (potassium permanganate).

Experiment "Soap Bubbles"

Do you want to tell your children what fun chemistry is? Programs for children do not allow the teacher to pay due attention to experiments in lessons; there is simply no time for this. So, let's do this optionally.

For elementary school students, this experiment will bring a lot of positive emotions, and you can do it in a few minutes. We will need:

  • liquid soap;
  • jar;
  • water;
  • thin wire.

In a jar, mix one part liquid soap with six parts water. We bend the end of a small piece of wire into a ring, dip it into the soap mixture, carefully pull it out and blow out of the mold a beautiful soap bubble of our own making.

For this experiment, only wire that does not have a nylon layer is suitable. Otherwise, children will not be able to blow soap bubbles.

To make it more interesting for the children, you can add food coloring to the soap solution. You can arrange soap competitions between schoolchildren, then chemistry for children will become a real holiday. The teacher thus introduces the children to the concept of solutions, solubility and explains the reasons for the appearance of bubbles.

Entertaining experience “Water from plants”

To begin with, the teacher explains how important water is for cells in living organisms. It is with the help of it that transportation takes place. nutrients. The teacher notes that if there is not enough water in the body, all living things die.

For the experiment you will need:

  • alcohol lamp;
  • test tubes;
  • green leaves;
  • test tube holder;
  • copper sulfate (2);
  • beaker.

This experiment will require 1.5-2 hours, but as a result, chemistry for children will be a manifestation of a miracle, a symbol of magic.

Green leaves are placed in a test tube and secured in a holder. In the flame of an alcohol lamp, you need to heat the entire test tube 2-3 times, and then do this only with the part where the green leaves are located.

The glass should be placed so that the gaseous substances released in the test tube fall into it. As soon as heating is completed, add grains of white anhydrous copper sulfate to the drop of liquid obtained inside the glass. Gradually White color disappears, and copper sulfate becomes blue or dark blue.

This experience brings children into complete delight, because before their eyes the color of substances changes. At the end of the experiment, the teacher tells the children about such a property as hygroscopicity. It is due to its ability to absorb water vapor (moisture) that white copper sulfate changes its color to blue.

Experiment "Magic Wand"

This experiment is suitable for an introductory lesson in an elective course in chemistry. First you need to make a star-shaped blank and soak it in a solution of phenolphthalein (indicator).

During the experiment itself, the star attached to the “magic wand” is first immersed in an alkali solution (for example, in a solution of sodium hydroxide). Children see how in a matter of seconds its color changes and a bright crimson color appears. Next, the colored form is placed in an acid solution (for the experiment, using a hydrochloric acid solution would be optimal), and the crimson color disappears - the star becomes colorless again.

If the experiment is carried out for children, during the experiment the teacher tells a “chemical tale”. For example, the hero of a fairy tale can be an inquisitive mouse who wanted to find out why magical land so many bright colors. For students in grades 8-9, the teacher introduces the concept of “indicator” and notes which indicators can determine the acidic environment, and which substances are needed to determine the alkaline environment of solutions.

"Genie in a Bottle" Experience

This experiment is demonstrated by the teacher himself, using a special fume hood. The experience is based on the specific properties of concentrated nitric acid. Unlike many acids, concentrated nitric acid is capable of chemical interaction with metals located after hydrogen (with the exception of platinum and gold).

You need to pour it into a test tube and add a piece of copper wire there. Under the hood, the test tube is heated, and the children observe the appearance of “red gin” vapors.

For students in grades 8-9, the teacher writes an equation chemical reaction, identifies signs of its occurrence (change in color, appearance of gas). This experiment is not suitable for demonstration outside the walls of a school chemistry laboratory. According to safety regulations, it involves the use of vapors of nitrogen oxide (“brown gas”) that pose a danger to children.

Home experiments

In order to whet the interest of schoolchildren in chemistry, you can offer a home experiment. For example, conduct an experiment on growing table salt crystals.

The child must prepare a saturated solution of table salt. Then place a thin twig in it, and as the water evaporates from the solution, crystals of table salt will “grow” on the twig.

The jar of solution should not be shaken or rotated. And when the crystals grow after 2 weeks, the stick must be very carefully removed from the solution and dried. And then, if desired, you can coat the product with colorless varnish.

Conclusion

IN school curriculum no more interesting subject than chemistry. But in order for children not to be afraid of this complex science, the teacher must devote sufficient time in his work to entertaining experiences and unusual experiments.

It is the practical skills that are formed during such work that will help stimulate interest in the subject. And in the lower grades, entertaining experiments are considered according to the Federal State Educational Standards as independent project and research activities.

Chemist is a very interesting and multifaceted profession, uniting under its wing many different specialists: chemical scientists, chemical technologists, analytical chemists, petrochemists, chemistry teachers, pharmacists and many others. We decided to celebrate the upcoming Chemist’s Day 2017 with them, so we selected several interesting and impressive experiments in the field under consideration, which even those who are as far from the profession of a chemist as possible can repeat. The best chemical experiments at home - read, watch and remember!

When is Chemist's Day celebrated?

Before we begin to consider our chemical experiments, let us clarify that traditionally Chemist’s Day is celebrated on the territory of states post-Soviet space at the very end of spring, namely on the last Sunday of May. This means that the date is not fixed: for example, in 2017 Chemist’s Day is celebrated on May 28. And if you work in the field chemical industry, or are studying a specialty in this field, or are otherwise directly related to chemistry on duty, then you have every right to join the celebration on this day.

Chemical experiments at home

Now let’s get down to the main thing, and begin to perform interesting chemical experiments: it is best to do this together with small children, who will definitely perceive what is happening as magic trick. Moreover, we tried to select chemical experiments for which reagents can be easily obtained at a pharmacy or store.

Experiment No. 1 - Chemical traffic light

Let's start with a very simple and beautiful experiment, which received this name for good reason, because the liquid participating in the experiment will change its color exactly to the colors of the traffic light - red, yellow and green.

You will need:

  • indigo carmine;
  • glucose;
  • caustic soda;
  • water;
  • 2 transparent glass containers.

Don't let the names of some ingredients scare you - you can easily buy glucose tablets at a pharmacy, indigo carmine is sold in stores as a food coloring, and you can find caustic soda in a hardware store. It is better to take tall containers, with a wide base and a narrower neck, for example, flasks, to make them easier to shake.

But what is interesting about chemical experiments is that there is an explanation for everything:

  • By mixing glucose with caustic soda, i.e. sodium hydroxide, we obtained an alkaline solution of glucose. Then, by mixing it with a solution of indigo carmine, we oxidize the liquid with oxygen, which it was saturated with during pouring from the flask - this is the reason for the appearance of the green color. Next, glucose begins to work as a reducing agent, gradually changing color to yellow. But by shaking the flask, we saturate the liquid with oxygen again, allowing the chemical reaction to go through this circle again.

You will get an idea of ​​how interesting it looks in real life from this short video:

Experiment No. 2 - Universal acidity indicator from cabbage

Children love interesting chemical experiments with colorful liquids, it’s no secret. But we, as adults, responsibly declare that such chemical experiments look very spectacular and interesting. Therefore, we advise you to conduct another “color” experiment at home - a demonstration of the amazing properties of red cabbage. It, like many other vegetables and fruits, contains anthocyanins - natural indicator dyes that change color depending on the pH level - i.e. degree of acidity of the environment. This property of cabbage will be useful to us in order to obtain further multi-colored solutions.

What we need:

  • 1/4 red cabbage;
  • lemon juice;
  • baking soda solution;
  • vinegar;
  • sugar solution;
  • Sprite type drink;
  • disinfectant;
  • bleach;
  • water;
  • 8 flasks or glasses.

Many of the substances on this list are quite dangerous, so be careful when performing simple chemical experiments at home, wear gloves and, if possible, safety glasses. And don’t let children get too close - they may knock over the reagents or the final contents of the colored cones and even want to try them, which should not be allowed.

Let's get started:

How do these chemical experiments explain the color changes?

  • The fact is that light falls on all objects that we see - and it contains all the colors of the rainbow. Moreover, each color in the spectrum has its own wavelength, and the molecules different shapes, in turn, reflect and absorb these waves. The wave that is reflected from the molecule is the one that we see, and this determines what color we perceive - because other waves are simply absorbed. And depending on what substance we add to the indicator, it begins to reflect only rays of a certain color. Nothing complicated!

For a slightly different version of this chemical experiment, with fewer reagents, see the video:

Experiment No. 3 - Dancing jelly worms

We continue to do chemical experiments at home - and we will conduct the third experiment on everyone’s favorite jelly candies in the form of worms. Even adults will find it funny, and children will be absolutely delighted.

Take the following ingredients:

  • a handful of gummy worms;
  • vinegar essence;
  • ordinary water;
  • baking soda;
  • glasses - 2 pcs.

When choosing suitable candies, choose smooth, chewy worms without sugar coating. To make them less heavy and easier to move, cut each candy lengthwise into two halves. So, let's begin some interesting chemical experiments:

  1. Make a solution of warm water and 3 tablespoons of soda in one glass.
  2. Place the worms there and keep them there for about fifteen minutes.
  3. Fill another deep glass with essence. Now you can slowly drop the jellies into the vinegar, watching how they begin to move up and down, which is in some way similar to a dance:

Why is this happening?

  • It's simple: baking soda, in which the worms are soaked for a quarter of an hour, is sodium bicarbonate, and the essence is an 80% solution of acetic acid. When they react, water, carbon dioxide in the form of small bubbles and sodium salt of acetic acid are formed. It is carbon dioxide in the form of bubbles that the worm becomes overgrown with, rises up, and then descends when they burst. But the process still continues, causing the candy to rise on the resulting bubbles and fall until it is completely completed.

And if you are seriously interested in chemistry, and want Chemist’s Day to become your professional holiday in the future, then you will probably be interested in watching the following video, which details the typical everyday life of chemistry students and their fascinating educational and scientific activities:


Take it for yourself and tell your friends!

Read also on our website:

show more

Our presentation of entertaining physics will tell you why in nature there cannot be two identical snowflakes and why an electric locomotive driver backs up before moving, where the largest reserves of water are located, and what invention of Pythagoras helps fight alcoholism.

Views