Penjelasan logaritma. Ekspresi menggunakan bilangan kompleks

Sifat-sifat dasar logaritma natural, grafik, domain definisi, himpunan nilai, rumus dasar, turunan, integral, pemuaian seri kekuatan dan representasi fungsi ln x menggunakan bilangan kompleks.

Definisi

Logaritma natural adalah fungsi y = di x, kebalikan dari eksponensial, x = ey, dan merupakan logaritma ke bilangan pokok e: ln x = log e x.

Logaritma natural banyak digunakan dalam matematika karena turunannya memiliki bentuk paling sederhana: (ln x)′ = 1/ x.

Berdasarkan definisi, basis logaritma natural adalah bilangan e:
e ≅ 2.718281828459045...;
.

Grafik fungsi y = di x.

Grafik logaritma natural (fungsi y = di x) diperoleh dari grafik eksponensial dengan refleksi cermin relatif terhadap garis lurus y = x.

Logaritma natural didefinisikan pada nilai-nilai positif variabel x. Ia meningkat secara monoton dalam domain definisinya.

Pada x → 0 limit logaritma naturalnya dikurangi tak terhingga (-∞).

Karena x → + ∞, limit logaritma naturalnya adalah ditambah tak terhingga (+ ∞). Untuk x besar, logaritma meningkat cukup lambat. Setiap fungsi daya xa dengan eksponen positif a tumbuh lebih cepat dari logaritma.

Sifat-sifat logaritma natural

Domain definisi, kumpulan nilai, ekstrem, naik, turun

Logaritma natural merupakan fungsi yang meningkat secara monoton, sehingga tidak memiliki ekstrem. Sifat-sifat utama logaritma natural disajikan dalam tabel.

dalam nilai x

dalam 1 = 0

Rumus dasar logaritma natural

Rumus berikut dari definisi fungsi invers:

Properti utama logaritma dan konsekuensinya

Rumus penggantian basa

Logaritma apa pun dapat dinyatakan dalam logaritma natural menggunakan rumus substitusi dasar:

Bukti rumus-rumus ini disajikan pada bagian "Logaritma".

Fungsi terbalik

Kebalikan dari logaritma natural adalah eksponen.

Jika kemudian

Jika kemudian.

Turunan ln x

Turunan dari logaritma natural:
.
Turunan dari logaritma natural modulus x:
.
Turunan dari orde ke-n:
.
Menurunkan rumus > > >

Integral

Integral dihitung dengan integrasi bagian:
.
Jadi,

Ekspresi menggunakan bilangan kompleks

Perhatikan fungsi variabel kompleks z:
.
Mari kita nyatakan variabel kompleksnya z melalui modul R dan argumen φ :
.
Dengan menggunakan properti logaritma, kita mendapatkan:
.
Atau
.
Argumen φ tidak didefinisikan secara unik. Jika Anda menaruh
, dimana n adalah bilangan bulat,
itu akan menjadi nomor yang sama untuk n yang berbeda.

Oleh karena itu, logaritma natural, sebagai fungsi dari variabel kompleks, bukanlah fungsi bernilai tunggal.

Ekspansi seri daya

Kapan perluasan terjadi:

Referensi:
DI DALAM. Bronstein, KA. Semendyaev, Buku Pegangan Matematika untuk Insinyur dan Mahasiswa, “Lan”, 2009.

Logaritma, seperti bilangan lainnya, dapat dijumlahkan, dikurangi, dan diubah dengan segala cara. Tapi karena logaritma bukanlah bilangan biasa, ada aturan di sini yang disebut properti utama.

Anda pasti perlu mengetahui aturan-aturan ini - tanpa aturan tersebut, tidak ada satu pun masalah logaritma serius yang dapat diselesaikan. Selain itu, jumlahnya sangat sedikit - Anda dapat mempelajari semuanya dalam satu hari. Jadi mari kita mulai.

Penjumlahan dan pengurangan logaritma

Pertimbangkan dua logaritma dengan dengan alasan yang sama:catatan A X dan mencatat A kamu. Kemudian mereka dapat dijumlahkan dan dikurangkan, dan:

  1. catatan A X+ catatan A kamu=log A (X · kamu);
  2. catatan A X− catatan A kamu=log A (X : kamu).

Jadi, jumlah logaritma sama dengan logaritma hasil kali, dan selisihnya sama dengan logaritma hasil bagi. Harap diperhatikan: poin kuncinya di sini adalah alasan yang identik. Jika alasannya berbeda, aturan ini tidak berlaku!

Rumus ini akan membantu Anda menghitung ekspresi logaritma meskipun bagian-bagian individualnya tidak dipertimbangkan (lihat pelajaran “Apa itu logaritma”). Lihatlah contohnya dan lihat:

Catatan 6 4 + catatan 6 9.

Karena logaritma mempunyai basis yang sama, kita menggunakan rumus penjumlahan:
catatan 6 4 + catatan 6 9 = catatan 6 (4 9) = catatan 6 36 = 2.

Tugas. Temukan nilai ekspresi: log 2 48 − log 2 3.

Basisnya sama, kita gunakan rumus selisihnya:
log 2 48 − log 2 3 = log 2 (48:3) = log 2 16 = 4.

Tugas. Temukan nilai ekspresi: log 3 135 − log 3 5.

Sekali lagi basisnya sama, jadi kita punya:
log 3 135 − log 3 5 = log 3 (135:5) = log 3 27 = 3.

Seperti yang Anda lihat, ekspresi aslinya terdiri dari logaritma “buruk”, yang tidak dihitung secara terpisah. Tetapi setelah transformasi, diperoleh angka yang sepenuhnya normal. Banyak yang dibangun berdasarkan fakta ini kertas ujian. Ya, ekspresi seperti ujian ditawarkan dengan sangat serius (terkadang hampir tidak ada perubahan) pada Ujian Negara Bersatu.

Mengekstraksi eksponen dari logaritma

Sekarang mari kita mempersulit tugas ini sedikit. Bagaimana jika basis atau argumen suatu logaritma adalah suatu pangkat? Maka eksponen derajat tersebut dapat dikeluarkan dari tanda logaritma dengan aturan sebagai berikut:

Sangat mudah untuk melihat bahwa aturan terakhir mengikuti dua aturan pertama. Namun lebih baik mengingatnya - dalam beberapa kasus ini akan mengurangi jumlah perhitungan secara signifikan.

Tentu saja, semua aturan ini masuk akal jika ODZ logaritma dipatuhi: A > 0, A ≠ 1, X> 0. Dan satu hal lagi: belajar menerapkan semua rumus tidak hanya dari kiri ke kanan, tetapi juga sebaliknya, yaitu. Anda dapat memasukkan angka sebelum tanda logaritma ke dalam logaritma itu sendiri. Inilah yang paling sering dibutuhkan.

Tugas. Temukan nilai ekspresi: log 7 49 6 .

Mari kita hilangkan derajat argumen menggunakan rumus pertama:
catatan 7 49 6 = 6 catatan 7 49 = 6 2 = 12

Tugas. Temukan arti dari ungkapan:

[Keterangan untuk gambar]

Perhatikan bahwa penyebutnya berisi logaritma, yang basis dan argumennya merupakan pangkat eksak: 16 = 2 4 ; 49 = 7 2. Kita punya:

[Keterangan untuk gambar]

Saya pikir contoh terakhir memerlukan beberapa klarifikasi. Kemana perginya logaritma? Hingga saat-saat terakhir kami hanya bekerja dengan penyebutnya. Kami menyajikan basis dan argumen logaritma dalam bentuk pangkat dan mengeluarkan eksponennya - kami mendapatkan pecahan "tiga lantai".

Sekarang mari kita lihat pecahan utamanya. Pembilang dan penyebutnya mengandung angka yang sama: log 2 7. Karena log 2 7 ≠ 0, kita dapat mengurangi pecahan tersebut - 2/4 akan tetap berada di penyebutnya. Menurut aturan aritmatika, empat dapat dipindahkan ke pembilang, itulah yang telah dilakukan. Hasilnya adalah jawabannya: 2.

Transisi ke fondasi baru

Berbicara tentang aturan penjumlahan dan pengurangan logaritma, saya secara khusus menekankan bahwa aturan tersebut hanya bekerja dengan basis yang sama. Bagaimana jika alasannya berbeda? Bagaimana jika keduanya bukan pangkat eksak dari bilangan yang sama?

Formula untuk transisi ke yayasan baru datang untuk menyelamatkan. Mari kita rumuskan dalam bentuk teorema:

Biarkan log logaritma diberikan A X. Lalu untuk nomor berapa pun C seperti yang C> 0 dan C≠ 1, persamaannya benar:

[Keterangan untuk gambar]

Khususnya, jika kita menempatkan C = X, kita mendapatkan:

[Keterangan untuk gambar]

Dari rumus kedua dapat disimpulkan bahwa basis dan argumen logaritma dapat ditukar, tetapi dalam kasus ini seluruh ekspresi “dibalik”, yaitu. logaritma muncul di penyebut.

Rumus ini jarang ditemukan dalam ekspresi numerik biasa. Anda dapat menilai betapa mudahnya hal tersebut hanya ketika menyelesaikan persamaan dan pertidaksamaan logaritma.

Namun ada permasalahan yang tidak bisa diselesaikan sama sekali kecuali dengan pindah ke yayasan baru. Mari kita lihat beberapa di antaranya:

Tugas. Temukan nilai ekspresi: log 5 16 log 2 25.

Perhatikan bahwa argumen kedua logaritma mengandung pangkat yang pasti. Mari kita keluarkan indikatornya: log 5 16 = log 5 2 4 = 4log 5 2; catatan 2 25 = catatan 2 5 2 = 2 catatan 2 5;

Sekarang mari kita “membalikkan” logaritma kedua:

[Keterangan untuk gambar]

Karena hasil kali tidak berubah ketika mengatur ulang faktornya, kami dengan tenang mengalikan empat dan dua, lalu menangani logaritma.

Tugas. Temukan nilai ekspresi: log 9 100 lg 3.

Basis dan argumen logaritma pertama adalah pangkat eksak. Mari kita tuliskan ini dan hilangkan indikatornya:

[Keterangan untuk gambar]

Sekarang mari kita hilangkan logaritma desimal dengan berpindah ke basis baru:

[Keterangan untuk gambar]

Identitas logaritma dasar

Seringkali dalam proses penyelesaian, suatu bilangan perlu direpresentasikan sebagai logaritma ke basis tertentu. Dalam hal ini, rumus berikut akan membantu kita:

Dalam kasus pertama, nomornya N menjadi indikator derajat kedudukan dalam argumen tersebut. Nomor N bisa apa saja, karena itu hanya nilai logaritma.

Rumus kedua sebenarnya adalah definisi yang diparafrasekan. Itulah sebutannya: identitas logaritma dasar.

Sebenarnya apa yang akan terjadi jika jumlahnya B naikkan pangkat sedemikian rupa sehingga bilangan tersebut B untuk kekuatan ini memberikan nomornya A? Benar: Anda mendapatkan nomor yang sama A. Baca kembali paragraf ini dengan cermat - banyak orang terjebak di dalamnya.

Seperti rumus untuk berpindah ke basis baru, identitas logaritma dasar terkadang merupakan satu-satunya solusi yang mungkin.

Tugas. Temukan arti dari ungkapan:

[Keterangan untuk gambar]

Perhatikan bahwa log 25 64 = log 5 8 - cukup ambil kuadrat dari basis dan argumen logaritma. Dengan memperhatikan aturan perkalian pangkat dengan basis yang sama, kita peroleh:

[Keterangan untuk gambar]

Kalau ada yang belum tahu, ini tugas sebenarnya dari Unified State Exam :)

Satuan logaritma dan logaritma nol

Sebagai kesimpulan, saya akan memberikan dua identitas yang hampir tidak dapat disebut properti - melainkan merupakan konsekuensi dari definisi logaritma. Mereka terus-menerus muncul dalam masalah dan, yang mengejutkan, menciptakan masalah bahkan bagi siswa “mahir”.

  1. catatan A A= 1 adalah satuan logaritmik. Ingat sekali dan untuk selamanya: logaritma ke basis apa pun A dari titik dasar ini sama dengan satu.
  2. catatan A 1 = 0 adalah nol logaritmik. Basis A bisa apa saja, tapi jika argumennya berisi satu, logaritmanya sama dengan nol! Karena A 0 = 1 adalah konsekuensi langsung dari definisi tersebut.

Itu semua propertinya. Pastikan untuk berlatih mempraktikkannya! Unduh lembar contekan di awal pelajaran, cetak, dan selesaikan soal.

Salah satu unsur aljabar tingkat primitif adalah logaritma. Nama itu berasal bahasa Yunani dari kata “bilangan” atau “pangkat” yang berarti derajat berapa bilangan pokok yang harus dipangkatkan untuk mencari bilangan akhir.

Jenis logaritma

  • log a b – logaritma bilangan b ke basis a (a > 0, a ≠ 1, b > 0);
  • catatan b – logaritma desimal(logaritma ke basis 10, a = 10);
  • ln b – logaritma natural (logaritma ke basis e, a = e).

Bagaimana cara menyelesaikan logaritma?

Logaritma dari b ke basis a adalah eksponen yang mengharuskan b dipangkatkan ke basis a. Hasil yang diperoleh diucapkan seperti ini: “logaritma b ke basis a.” Larutan masalah logaritma adalah Anda perlu menentukan derajat tertentu berdasarkan angka angka-angka yang ditunjukkan. Ada beberapa aturan dasar untuk menentukan atau menyelesaikan logaritma, serta mengubah notasi itu sendiri. Dengan menggunakannya, persamaan logaritma diselesaikan, turunan ditemukan, integral diselesaikan, dan banyak operasi lainnya dilakukan. Pada dasarnya, penyelesaian logaritma itu sendiri adalah notasinya yang disederhanakan. Di bawah ini adalah rumus dan properti dasar:

Untuk setiap a ; sebuah > 0; a ≠ 1 dan untuk sembarang x ; kamu > 0.

  • a log a b = b – identitas logaritma dasar
  • log a 1 = 0
  • loga a = 1
  • log a (x y) = log a x + log a y
  • log ax/ y = log ax – log ay
  • log a 1/x = -log ax
  • log a x p = p log a x
  • log a k x = 1/k log a x , untuk k ≠ 0
  • log a x = log a c x c
  • log a x = log b x/ log b a – rumus pindah ke pangkalan baru
  • log a x = 1/log x a


Cara menyelesaikan logaritma - petunjuk langkah demi langkah untuk menyelesaikannya

  • Pertama, tuliskan persamaan yang diperlukan.

Harap diperhatikan: jika logaritma dasar adalah 10, entri tersebut dipersingkat sehingga menghasilkan logaritma desimal. Jika itu layak bilangan asli e, lalu kita tuliskan, turunkan ke logaritma natural. Artinya hasil semua logaritma adalah pangkat dari bilangan dasar yang dipangkatkan sehingga diperoleh bilangan b.


Secara langsung, solusinya terletak pada penghitungan derajat ini. Sebelum menyelesaikan suatu ekspresi dengan logaritma, harus disederhanakan menurut aturannya, yaitu menggunakan rumus. Anda dapat menemukan identitas utamanya dengan melihat kembali sedikit artikel tersebut.

Jika menjumlahkan dan mengurangkan logaritma dengan dua bilangan berbeda tetapi mempunyai basis yang sama, gantilah dengan satu logaritma dengan hasil kali atau pembagian bilangan b dan c berturut-turut. Dalam hal ini, Anda dapat menerapkan rumus untuk berpindah ke pangkalan lain (lihat di atas).

Jika Anda menggunakan ekspresi untuk menyederhanakan logaritma, ada beberapa batasan yang perlu dipertimbangkan. Artinya: basis logaritma a saja nomor positif, tapi tidak sama dengan satu. Angka b, seperti a, harus lebih besar dari nol.

Ada kalanya, dengan menyederhanakan suatu ekspresi, Anda tidak akan dapat menghitung logaritma secara numerik. Kebetulan ungkapan seperti itu tidak masuk akal, karena banyak pangkat adalah bilangan irasional. Dalam kondisi ini, biarkan pangkat bilangan tersebut sebagai logaritma.



Tugas yang solusinya adalah transformasi ekspresi logaritmik , cukup umum di Unified State Examination.

Untuk berhasil mengatasinya dengan investasi waktu minimum selain waktu utama identitas logaritmik, Anda perlu mengetahui dan menggunakan beberapa rumus lagi dengan benar.

Ini adalah: a log a b = b, di mana a, b > 0, a ≠ 1 (Ini mengikuti langsung dari definisi logaritma).

log a b = log c b / log c a atau log a b = 1/log b a
dimana a, b, c > 0; a, c ≠ 1.

log a m b n = (m/n) log |a| |b|
dimana a, b > 0, a ≠ 1, m, n Є R, n ≠ 0.

catatan c b = b catatan c a
dimana a, b, c > 0 dan a, b, c ≠ 1

Untuk menunjukkan validitas persamaan keempat, mari kita ambil logaritma kiri dan sisi kanan berdasarkan a. Kita mendapatkan log a (a log dengan b) = log a (b log dengan a) atau log dengan b = log dengan a · log a b; log c b = log c a · (log c b / log c a); log dengan b = log dengan b.

Kita telah membuktikan persamaan logaritma, artinya ekspresi di bawah logaritma juga sama. Formula 4 sudah terbukti.

Contoh 1.

Hitung 81 log 27 5 log 5 4 .

Larutan.

81 = 3 4 , 27 = 3 3 .

log 27 5 = 1/3 log 3 5, log 5 4 = log 3 4 / log 3 5. Oleh karena itu,

catatan 27 5 catatan 5 4 = 1/3 catatan 3 5 (catatan 3 4 / catatan 3 5) = 1/3 catatan 3 4.

Maka 81 log 27 5 log 5 4 = (3 4) 1/3 log 3 4 = (3 log 3 4) 4/3 = (4) 4/3 = 4 3 √4.

Anda dapat menyelesaikan sendiri tugas berikut ini.

Hitung (8 log 2 3 + 3 1/ log 2 3) - log 0,2 5.

Sebagai petunjuk, 0,2 = 1/5 = 5 -1 ; catatan 0,2 5 = -1.

Jawaban: 5.

Contoh 2.

Hitung (√11) catatan √3 9- catatan 121 81 .

Larutan.

Mari kita ubah persamaannya: 9 = 3 2, √3 = 3 1/2, log √3 9 = 4,

121 = 11 2, 81 = 3 4, log 121 81 = 2 log 11 3 (digunakan rumus 3).

Maka (√11) log √3 9- log 121 81 = (11 1/2) 4-2 log 11 3 = (11) 2- log 11 3 = 11 2 / (11) log 11 3 = 11 2 / ( 11 catatan 11 3) = 121/3.

Contoh 3.

Hitung log 2 24 / log 96 2 - log 2 192 / log 12 2.

Larutan.

Logaritma yang terdapat pada contoh kita ganti dengan logaritma dengan basis 2.

log 96 2 = 1/log 2 96 = 1/log 2 (2 5 3) = 1/(log 2 2 5 + log 2 3) = 1/(5 + log 2 3);

catatan 2 192 = catatan 2 (2 6 3) = (catatan 2 2 6 + catatan 2 3) = (6 + catatan 2 3);

catatan 2 24 = catatan 2 (2 3 3) = (catatan 2 2 3 + catatan 2 3) = (3 + catatan 2 3);

log 12 2 = 1/log 2 12 = 1/log 2 (2 2 3) = 1/(log 2 2 2 + log 2 3) = 1/(2 + log 2 3).

Maka log 2 24 / log 96 2 – log 2 192 / log 12 2 = (3 + log 2 3) / (1/(5 + log 2 3)) – ((6 + log 2 3) / (1/( 2 + catatan 2 3)) =

= (3 + catatan 2 3) · (5 + catatan 2 3) – (6 + catatan 2 3)(2 + catatan 2 3).

Setelah membuka tanda kurung dan membawa suku-suku serupa, kita mendapatkan angka 3. (Saat menyederhanakan ekspresi, kita dapat menyatakan log 2 3 dengan n dan menyederhanakan ekspresi

(3 + n) · (5 + n) – (6 + n)(2 + n)).

Jawaban: 3.

Anda dapat menyelesaikan sendiri tugas berikut:

Hitung (log 3 4 + log 4 3 + 2) log 3 16 log 2 144 3.

Di sini perlu dilakukan transisi ke logaritma basis 3 dan memfaktorkan bilangan besar menjadi faktor prima.

Jawaban:1/2

Contoh 4.

Diberikan tiga bilangan A = 1/(log 3 0.5), B = 1/(log 0.5 3), C = log 0.5 12 – log 0.5 3. Susunlah bilangan-bilangan tersebut dalam urutan menaik.

Larutan.

Mari kita transformasikan bilangan A = 1/(log 3 0.5) = log 0.5 3; C = log 0,5 12 – log 0,5 3 = log 0,5 12/3 = log 0,5 4 = -2.

Mari kita bandingkan

log 0,5 3 > log 0,5 4 = -2 dan log 0,5 3< -1 = log 0,5 2, так как функция у = log 0,5 х – убывающая.

Atau 2< log 0,5 3 < -1. Тогда -1 < 1/(log 0,5 3) < -1/2.

Menjawab. Jadi urutan penempatan angkanya adalah: C; A; DI DALAM.

Contoh 5.

Berapa banyak bilangan bulat dalam interval tersebut (log 3 1/16 ; log 2 6 48).

Larutan.

Mari kita tentukan di antara pangkat 3 manakah angka 1/16 berada. Kami mendapatkan 1/27< 1 / 16 < 1 / 9 .

Karena fungsi y = log 3 x bertambah, maka log 3 (1/27)< log 3 (1 / 16) < log 3 (1 / 9); -3 < log 3 (1 / 16) < -2.

log 6 48 = log 6 (36 4/3) = log 6 36 + log 6 (4/3) = 2 + log 6 (4/3). Mari kita bandingkan log 6 (4/3) dan 1/5. Dan untuk ini kita bandingkan angka 4/3 dan 6 1/5. Mari kita naikkan kedua angka tersebut menjadi pangkat 5. Kita peroleh (4/3) 5 = 1024/243 = 4 52/243< 6. Следовательно,

catatan 6 (4/3)< 1 / 5 . 2 < log 6 48 < 2 1 / 5 . Числа, входящие в двойное неравенство, положительные. Их можно возводить в квадрат. Знаки неравенства при этом не изменятся. Тогда 4 < log 6 2 48 < 4 21 / 25.

Oleh karena itu, interval (log 3 1/16 ; log 6 48) mencakup interval [-2; 4] dan bilangan bulat -2 ditempatkan di atasnya; -1; 0; 1; 2; 3; 4.

Jawaban: 7 bilangan bulat.

Contoh 6.

Hitung 3 lglg 2/ lg 3 - lg20.

Larutan.

3 lg lg 2/ lg 3 = (3 1/ lg3) lg lg 2 = (3 lо g 3 10) lg lg 2 = 10 lg lg 2 = lg2.

Maka 3 lglg2/lg3 - lg 20 = lg 2 – lg 20 = lg 0,1 = -1.

Jawaban 1.

Contoh 7.

Diketahui log 2 (√3 + 1) + log 2 (√6 – 2) = A. Carilah log 2 (√3 –1) + log 2 (√6 + 2).

Larutan.

Angka (√3 + 1) dan (√3 – 1); (√6 – 2) dan (√6 + 2) adalah konjugat.

Mari kita lakukan transformasi ekspresi berikut

√3 – 1 = (√3 – 1) · (√3 + 1)) / (√3 + 1) = 2/(√3 + 1);

√6 + 2 = (√6 + 2) · (√6 – 2)) / (√6 – 2) = 2/(√6 – 2).

Maka log 2 (√3 – 1) + log 2 (√6 + 2) = log 2 (2/(√3 + 1)) + log 2 (2/(√6 – 2)) =

Log 2 2 – log 2 (√3 + 1) + log 2 2 – log 2 (√6 – 2) = 1 – log 2 (√3 + 1) + 1 – log 2 (√6 – 2) =

2 – log 2 (√3 + 1) – log 2 (√6 – 2) = 2 – A.

Jawaban: 2 – A.

Contoh 8.

Sederhanakan dan temukan perkiraan nilai ekspresi (log 3 2 log 4 3 log 5 4 log 6 5 ... log 10 9.

Larutan.

Kami mengurangi semua logaritma menjadi kesamaan 10.

(log 3 2 log 4 3 log 5 4 log 6 5 ... log 10 9 = (lg 2 / lg 3) (lg 3 / lg 4) (lg 4 / lg 5) (lg 5 / lg 6) · … · (lg 8 / lg 9) · lg 9 = lg 2 ≈ 0,3010 (Perkiraan nilai lg 2 dapat diketahui dengan menggunakan tabel, mistar hitung, atau kalkulator).

Jawaban: 0,3010.

Contoh 9.

Hitung log a 2 b 3 √(a 11 b -3) jika log √ a b 3 = 1. (Dalam contoh ini, a 2 b 3 adalah basis logaritma).

Larutan.

Jika log √ a b 3 = 1, maka 3/(0,5 log a b = 1. Dan log a b = 1/6.

Maka log a 2 b 3√(a 11 b -3) = 1/2 log a 2 b 3 (a 11 b -3) = log a (a 11 b -3) / (2log a (a 2 b 3) ) = (log a a 11 + log a b -3) / (2(log a a 2 + log a b 3)) = (11 – 3log a b) / (2(2 + 3log a b)) Mengingat log a b = 1/ 6 kita peroleh (11 – 3 1/6) / (2(2 + 3 1/6)) = 10,5/5 = 2,1.

Jawaban: 2.1.

Anda dapat menyelesaikan sendiri tugas berikut:

Hitung log √3 6 √2.1 jika log 0.7 27 = a.

Jawaban: (3+a)/(3a).

Contoh 10.

Hitung 6,5 4/ log 3 169 · 3 1/ log 4 13 + log125.

Larutan.

6,5 4/ catatan 3 169 · 3 1/ catatan 4 13 + catatan 125 = (13/2) 4/2 catatan 3 13 · 3 2/ catatan 2 13 + 2log 5 5 3 = (13/2) 2 catatan 13 3 3 2 log 13 2 + 6 = (13 log 13 3 / 2 log 13 3) 2 (3 log 13 2) 2 + 6 = (3/2 log 13 3) 2 (3 log 13 2) 2 + 6 = ( 3 2 /(2 catatan 13 3) 2) · (2 ​​catatan 13 3) 2 + 6.

(2 log 13 3 = 3 log 13 2 (rumus 4))

Kita mendapat 9 + 6 = 15.

Jawaban: 15.

Masih ada pertanyaan? Tidak yakin bagaimana cara menemukan nilai ekspresi logaritma?
Untuk mendapatkan bantuan dari tutor -.
Pelajaran pertama gratis!

blog.site, apabila menyalin materi seluruhnya atau sebagian, diperlukan link ke sumber aslinya.

Jadi, kita punya kekuatan dua. Jika Anda mengambil angka dari garis bawah, Anda dapat dengan mudah menemukan pangkat yang harus Anda naikkan dua untuk mendapatkan angka ini. Misalnya, untuk mendapatkan 16, Anda perlu menaikkan dua pangkat empat. Dan untuk mendapatkan 64, Anda perlu menaikkan dua pangkat enam. Hal ini dapat dilihat dari tabel.

Dan sekarang - sebenarnya definisi logaritma:

Basis logaritma dari x adalah pangkat yang harus dipangkatkan a untuk mendapatkan x.

Sebutan: log a x = b, dengan a adalah basis, x adalah argumen, b adalah logaritma sebenarnya.

Misalnya, 2 3 = 8 ⇒ log 2 8 = 3 (logaritma basis 2 dari 8 adalah tiga karena 2 3 = 8). Dengan keberhasilan yang sama log 2 64 = 6, karena 2 6 = 64.

Operasi mencari logaritma suatu bilangan ke basis tertentu disebut logaritma. Jadi, mari tambahkan baris baru ke tabel kita:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
catatan 2 2 = 1catatan 2 4 = 2 catatan 2 8 = 3catatan 2 16 = 4 catatan 2 32 = 5catatan 2 64 = 6

Sayangnya, tidak semua logaritma dapat dihitung dengan mudah. Misalnya, coba cari log 2 5 . Angka 5 tidak ada dalam tabel, tetapi logika menyatakan bahwa logaritma akan terletak di suatu tempat pada segmen tersebut. Karena 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Bilangan seperti itu disebut irasional: bilangan setelah koma dapat ditulis ad infinitum dan tidak pernah terulang. Jika logaritmanya ternyata irasional, lebih baik dibiarkan seperti itu: log 2 5, log 3 8, log 5 100.

Penting untuk dipahami bahwa logaritma adalah ekspresi dengan dua variabel (basis dan argumen). Pada awalnya banyak orang bingung mana dasar dan mana argumentasinya. Untuk menghindari kesalahpahaman yang mengganggu, lihat saja gambarnya:

Di hadapan kita tidak lebih dari definisi logaritma. Ingat: logaritma adalah kekuatan, di mana basis harus dibangun untuk mendapatkan argumen. Ini adalah basis yang dinaikkan ke pangkat - disorot dengan warna merah pada gambar. Ternyata alasnya selalu di bawah! Saya memberi tahu siswa saya aturan luar biasa ini pada pelajaran pertama - dan tidak ada kebingungan yang timbul.

Kami telah menemukan definisinya - yang tersisa hanyalah mempelajari cara menghitung logaritma, mis. hilangkan tanda "log". Untuk memulainya, kami mencatat bahwa dua fakta penting mengikuti definisi tersebut:

  1. Argumen dan basisnya harus selalu lebih besar dari nol. Ini mengikuti definisi derajat dengan eksponen rasional, yang kemudian direduksi menjadi definisi logaritma.
  2. Basisnya harus berbeda dari yang satu, karena yang satu tetap satu sampai tingkat apa pun. Oleh karena itu, pertanyaan “kepada kekuatan apa seseorang harus dinaikkan untuk mendapatkan dua” tidak ada artinya. Tidak ada gelar seperti itu!

Pembatasan seperti ini disebut rentang nilai yang dapat diterima(ODZ). Ternyata ODZ logaritmanya seperti ini: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Perhatikan bahwa tidak ada batasan pada angka b (nilai logaritma). Misalnya, logaritmanya mungkin negatif: log 2 0,5 = −1, karena 0,5 = 2 −1.

Namun, sekarang kita hanya mempertimbangkan ekspresi numerik, yang tidak perlu mengetahui VA logaritmanya. Semua batasan telah diperhitungkan oleh penulis masalah. Namun ketika persamaan dan pertidaksamaan logaritmik mulai berlaku, persyaratan DL akan menjadi wajib. Bagaimanapun juga, dasar dan argumennya mungkin mengandung konstruksi yang sangat kuat yang belum tentu sesuai dengan batasan di atas.

Sekarang mari kita pertimbangkan skema umum menghitung logaritma. Ini terdiri dari tiga langkah:

  1. Nyatakan basis a dan argumen x sebagai pangkat dengan basis minimum yang mungkin lebih besar dari satu. Dalam prosesnya, lebih baik menghilangkan desimal;
  2. Selesaikan persamaan variabel b: x = a b ;
  3. Angka b yang dihasilkan akan menjadi jawabannya.

Itu saja! Jika logaritmanya ternyata irasional, hal ini sudah terlihat pada langkah pertama. Persyaratan bahwa basis lebih besar dari satu sangatlah penting: ini mengurangi kemungkinan kesalahan dan sangat menyederhanakan perhitungan. Sama dengan desimal: jika Anda segera mengonversinya ke yang biasa, kesalahannya akan jauh lebih sedikit.

Mari kita lihat cara kerja skema ini menggunakan contoh spesifik:

Tugas. Hitung logaritmanya: log 5 25

  1. Mari kita bayangkan basis dan argumen sebagai pangkat lima: 5 = 5 1 ; 25 = 5 2 ;
  2. Mari buat dan selesaikan persamaannya:
    catatan 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. Kami menerima jawabannya: 2.

Tugas. Hitung logaritmanya:

Tugas. Hitung logaritmanya: log 4 64

  1. Mari kita bayangkan basis dan argumen sebagai pangkat dua: 4 = 2 2 ; 64 = 2 6 ;
  2. Mari buat dan selesaikan persamaannya:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. Kami menerima jawabannya: 3.

Tugas. Hitung logaritmanya: log 16 1

  1. Mari kita bayangkan basis dan argumen sebagai pangkat dua: 16 = 2 4 ; 1 = 2 0 ;
  2. Mari buat dan selesaikan persamaannya:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. Kami menerima jawabannya: 0.

Tugas. Hitung logaritmanya: log 7 14

  1. Mari kita bayangkan basis dan argumennya sebagai pangkat tujuh: 7 = 7 1 ; 14 tidak dapat direpresentasikan sebagai pangkat tujuh, karena 7 1< 14 < 7 2 ;
  2. Dari paragraf sebelumnya dapat disimpulkan bahwa logaritma tidak dihitung;
  3. Jawabannya tidak ada perubahan: log 7 14.

Catatan kecil pada contoh terakhir. Bagaimana Anda bisa yakin bahwa suatu bilangan bukanlah pangkat eksak dari bilangan lain? Caranya sangat sederhana - faktorkan saja ke dalam faktor prima. Jika pemuaian mempunyai paling sedikit dua faktor yang berbeda, maka bilangan tersebut bukanlah pangkat pasti.

Tugas. Cari tahu apakah angka-angka tersebut merupakan pangkat eksak: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - derajat eksak, karena hanya ada satu pengganda;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - bukan pangkat eksak, karena ada dua faktor: 3 dan 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - derajat eksak;
35 = 7 · 5 - sekali lagi bukan pangkat pasti;
14 = 7 · 2 - sekali lagi bukan derajat pasti;

Mari kita perhatikan juga bahwa kita sendiri bilangan prima selalu merupakan derajat yang tepat dari diri mereka sendiri.

Logaritma desimal

Beberapa logaritma sangat umum sehingga mempunyai nama dan simbol khusus.

Logaritma desimal x adalah logaritma basis 10, yaitu. Pangkat bilangan 10 yang harus dipangkatkan untuk memperoleh bilangan x. Sebutan: lg x.

Misalnya log 10 = 1; catatan 100 = 2; lg 1000 = 3 - dst.

Mulai sekarang, ketika frasa seperti “Temukan lg 0,01” muncul di buku teks, ketahuilah bahwa ini bukan salah ketik. Ini adalah logaritma desimal. Namun, jika Anda belum terbiasa dengan notasi ini, Anda selalu dapat menulis ulang:
catatan x = catatan 10x

Segala sesuatu yang benar untuk logaritma biasa juga berlaku untuk logaritma desimal.

Logaritma natural

Ada logaritma lain yang memiliki sebutan tersendiri. Dalam beberapa hal, ini bahkan lebih penting daripada desimal. Ini tentang tentang logaritma natural.

Logaritma natural dari x adalah logaritma ke basis e, yaitu pangkat berapa bilangan e harus dipangkatkan untuk memperoleh bilangan x. Penunjukan: ln x .

Banyak yang akan bertanya: berapakah angka e? Ini bilangan irasional, miliknya nilai yang tepat mustahil untuk ditemukan dan dicatat. Saya hanya akan memberikan angka pertama:
e = 2,718281828459...

Kami tidak akan menjelaskan secara detail tentang apa nomor ini dan mengapa diperlukan. Ingatlah bahwa e adalah basis logaritma natural:
ln x = log e x

Jadi ln e = 1 ; dalam e 2 = 2; dalam e 16 = 16 - dst. Sebaliknya, ln 2 adalah bilangan irasional. Secara umum, logaritma natural apa pun bilangan rasional irasional. Kecuali, tentu saja, untuk satu hal: ln 1 = 0.

Untuk logaritma natural semua aturan yang berlaku untuk logaritma biasa adalah valid.

Tampilan